SM-2302 Special Lectures

Dr. Haziq Jamil

2024-10-02

Welcome

The three topics for this year’s special lectures are:

1. Web scraping and modelling
2. GIS and spatial data
3. Quantitative text analysis

You will find the lecture notes and materials for each topic by clicking on the menu button.
These lectures are meant to be more “hands-on” than the previous R1-4 lectures, so be prepared
to get your hands dirty with some code!

You may also browse the GitHub repo for the special lecture notes. In particular, you will find
.qmd files, which you can open in RStudio. Best to clone the repo to your local computers
and open the special-lectures.Rproj file in RStudio. You will find the source code exactly
as it is displayed in the html files. You can also turn on “visual” mode in RStudio to see a
friendlier version of the .qmd files.

Part |

Lectures

1 Data Scraping and Linear Regression

For topic 1, we will cover linear regression. But before diving into that topic, we will talk
about how to scrape data from the web.

o https://rdds.hadley.nz/webscraping

Libraries:

library(tidyverse)

-- Attaching core tidyverse packages ————-——-—-———————————————- tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.1 v tibble 3.2.1

v lubridate 1.9.3 v tidyr 1.3.1

vV purrr 1.0.2

—-- Conflicts ————————————————————— oo tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to becor

library(rvest)

Attaching package: 'rvest'
The following object is masked from 'package:readr':

guess_encoding

library(polite) # not to be used

1.1

Ethics

Data scraping is the process of extracting data from websites. This can be done manually, but
it is often done using a program. In this section, we will use the rvest package to scrape data

from a website.

When scraping car prices from sellers’ websites in Brunei, it’s important to consider legal and
ethical aspects:

1.

1.2

Legal Considerations: If the data is public, non-personal, and factual, scraping is
generally acceptable. However, laws vary by location. If the data is behind a login or
used for commercial purposes, consulting a lawyer is advisable.

. Terms of Service: Many websites prohibit scraping in their terms of service. In some

regions, like the US, these terms may not be binding unless you explicitly agree to them
(e.g., by creating an account). In Europe, these terms are often enforceable even without
explicit consent.

Personally Identifiable Information: Avoid scraping data that includes personal
information (names, contact details, etc.) due to strict privacy laws like the GDPR in
Europe. Ethical concerns arise even if the data is public.

. Copyright: Data like car prices is generally not protected by copyright, as it’s factual.

However, if scraping includes original content (like descriptions or images), consider
copyright laws and whether “fair use” applies.

HTML basics

HTML stands for “HyperText Markup Language” and looks like this:

<html>
<head>
<title>Page title</title>
</head>
<body>
<h1l id='first'>A heading</h1>
<p>Some text & some bold text.</p>

</body>

HTML has a hierarchical structure formed by elements which consist of a start tag
(e.g. <tag>), optional attributes (id='first'), an end tag' (like </tag>), and contents
(everything in between the start and end tag).

Since < and > are used for start and end tags, you can’t write them directly. Instead you have
to use the HTML escapes > ; (greater than) and &1t; (less than). And since those escapes
use &, if you want a literal ampersand you have to escape it as &. There are a wide range
of possible HTML escapes but you don’t need to worry about them too much because rvest
automatically handles them for you.

1.2.1 Elements

All up, there are over 100 HTML elements. Some of the most important are:

o Every HTML page must be in an <html> element, and it must have two children: <head>,
which contains document metadata like the page title, and <body>, which contains the
content you see in the browser.

o Block tags like <h1> (heading 1), <p> (paragraph), and (ordered list) form the
overall structure of the page.

o Inline tags like (bold), <i> (italics), and <a> (links) formats text inside block tags.

If you encounter a tag that you’ve never seen before, you can find out what it does with a little
googling. I recommend the MDN Web Docs which are produced by Mozilla, the company that
makes the Firefox web browser.

1.2.2 Contents

Most elements can have content in between their start and end tags. This content can either
be text or more elements. For example, the following HTML contains paragraph of text, with
one word in bold.

<p>
Hi! My name is Haziq.
</p>

This renders as

The children of a node refers only to elements, so the <p> element above has one child, the
 element. The element has no children, but it does have contents (the text “name”).

LA number of tags (including <p> and <1i>) don’t require end tags, but I think it’s best to include them
because it makes seeing the structure of the HTML a little easier.

https://developer.mozilla.org/en-US/docs/Web/HTML

Conceptually, this can be represented as follows:

element
con;ent cor{ent
‘Hi! My ' element "is Haziq.'
content
'name’

Some elements, like can’t have children. These elements depend solely on attributes for
their behavior.

1.2.3 Attributes
Tags can have named attributes which look like namel='valuel' name2='value2'. Two
of the most important attributes are id and class, which are used in conjunction with CSS

(Cascading Style Sheets) to control the visual appearance of the page. These are often useful
when scraping data off a page.

1.3 Reading HTML with rvest

You'll usually start the scraping process with read_html (). This returns an xml_document?
object which you’ll then manipulate using rvest functions:

html <- read_html("http://rvest.tidyverse.org/")
class(html)

[1] "xml document" "xml node"

2This class comes from the xml2 package. xml2 is a low-level package that rvest builds on top of.

https://xml2.r-lib.org

For examples and experimentation, rvest also includes a function that lets you create an
xml_document from literal HTML:

html <- minimal html ("
<p>This is a paragraph<p>

<1i>This is a bulleted list</1i>

")
html

{html_document}
<html>

[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
[2] <body>\n<p>This is a paragraph</p>\n<p>\n </p>\n\n<1i>This is a bull ...

Regardless of how you get the HT'ML, you’ll need some way to identify the elements that
contain the data you care about. rvest provides two options: CSS selectors and XPath expres-
sions. Here T’ll focus on CSS selectors because they’re simpler but still sufficiently powerful
for most scraping tasks.

1.4 CSS selectors

CSS is short for cascading style sheets, and is a tool for defining the visual styling of HTML
documents. CSS includes a miniature language for selecting elements on a page called CSS se-
lectors. CSS selectors define patterns for locating HTML elements, and are useful for scraping
because they provide a concise way of describing which elements you want to extract.

CSS selectors can be quite complex, but fortunately you only need the simplest for rvest,
because you can also write R code for more complicated situations. The four most important
selectors are:

e p: selects all <p> elements.
e .title: selects all elements with class “title”.
e p.special: selects all <p> elements with class “special”.

o #title: selects the element with the id attribute that equals “title”. Id attributes must
be unique within a document, so this will only ever select a single element.

If you want to learn more CSS selectors I recommend starting with the fun CSS dinner tutorial
and then referring to the MDN web docs.

Lets try out the most important selectors with a simple example:

html <- minimal html ("
<h1>This is a heading</hi1>
<p id='first'>This is a paragraph</p>
<p class='important'>This is an important paragraph</p>

II)

In rvest you can extract a single element with html_element () or all matching elements with
html_elements(). Both functions take a document® and a css selector:

html |> html_element("h1")

{html_node}
<h1>

html |> html_elements("p")

{xml_nodeset (2)}
[1] <p id="first">This is a paragraph</p>
[2] <p class="important">This is an important paragraph</p>

html |> html_elements(".important")

{xml_nodeset (1)}
[1] <p class="important">This is an important paragraph</p>

html |> html_elements("#first")

{xml nodeset (1)}
[1] <p id="first">This is a paragraph</p>

Selectors can also be combined in various ways using combinators. For example,The most im-
portant combinator is ” “; the descendant combination, because p a selects all <a> elements
that are a child of a <p> element.

If you don’t know exactly what selector you need, I highly recommend using SelectorGadget,
which lets you automatically generate the selector you need by supplying positive and negative
examples in the browser.

30r another element, more on that shortly.

https://flukeout.github.io/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://rvest.tidyverse.org/articles/selectorgadget.html

1.5 Extracting data

Now that you’ve got the elements you care about, you’ll need to get data out of them. You’ll
usually get the data from either the text contents or an attribute. But, sometimes (if you're
lucky!), the data you need will be in an HTML table.

1.5.1 Text
Use html_text2() to extract the plain text contents of an HTML element:

html <- minimal html("

apple & pear</1li>
banana</1i>
pineapple</1i>

")
html |>
html elements("1i") |[>
html _text2()

[1] "apple & pear" "banana" "pineapple"

Note that the escaped ampersand is automatically converted to &; you’ll only ever see HTML
escapes in the source HT'ML, not in the data returned by rvest.

You might wonder why I used html_text2(), since it seems to give the same result as
html_text():

html |>
html_elements("1i") |[>
html text()

[1] "apple & pear" "banana" "pineapple"

The main difference is how the two functions handle white space. In HTML, white space
is largely ignored, and it’s the structure of the elements that defines how text is laid out.
html_text2() does its best to follow the same rules, giving you something similar to what
you’d see in the browser. Take this example which contains a bunch of white space that HTML
ignores.

10

html <- minimal_html ("<body>
<p>
This is
a
paragraph.</p><p>This is another paragraph.

It has two sentences.</p>

n)

html_text2() gives you what you expect: two paragraphs of text separated by a blank line.

html [>
html_element ("body") |>
html text2() |[>
cat()

This is a paragraph.

This is another paragraph. It has two sentences.

Whereas html_text () returns the garbled raw underlying text:
html |[>
html_element ("body") [>

html text() [>
cat()

This is
a
paragraph.This is another paragraph.

It has two sentences.

1.5.2 Attributes

Attributes are used to record the destination of links (the href attribute of <a> elements) and
the source of images (the src attribute of the element):

11

html <- minimal html("
<p>cats</p>

Il)

The value of an attribute can be retrieved with html_attr():
html |>

html elements("a") [>
html_attr("href")

[1] "https://en.wikipedia.org/wiki/Cat"

html |[>
html_elements("img") |[>
html attr("src"

[1] "https://cataas.com/cat"

Note that html_attr() always returns a string, so you may need to post-process with
as.integer () /readr: :parse_integer () or similar.

html |>

html_elements("img") |>
html_attr("width")

[1] "100"

html [>
html_elements("img") [>
html_attr("width") |[>
as.integer ()

[1] 100

12

1.5.3 Tables

HTML tables are composed four main elements: <table>, <tr> (table row), <th> (table
heading), and <td> (table data). Here’s a simple HTML table with two columns and three
rOWS:

html <- minimal html("
<table>
<tr>
<th>x</th>
<th>y</th>
</tr>
<tr>
<td>1.5</td>
<td>2.7</td>
</tr>
<tr>
<td>4.9</td>
<td>1.3</td>
</tr>
<tr>
<td>7.2</td>
<td>8.1</td>
</tr>
</table>
")

Because tables are a common way to store data, rvest includes the handy html_table () which
converts a table into a data frame:

html |>

html _node("table") |[>
html table()

A tibble: 3 x 2

x y

<dbl> <dbl>
1 1.5 2.7
2 4.9 1.3
3 7.2 8.1

13

1.6 Element vs elements

When using rvest, your eventual goal is usually to build up a data frame, and you want each
row to correspond some repeated unit on the HI'ML page. In this case, you should generally
start by using html_elements () to select the elements that contain each observation then use
html_element () to extract the variables from each observation. This guarantees that you’ll
get the same number of values for each variable because html_element () always returns the
same number of outputs as inputs.

To illustrate this problem take a look at this simple example I constructed using a few entries
from dplyr: :starwars
html <- minimal html("

<1i>C-3P0 is a <i>droid</i> that weighs 167 kg</1li>
<1i>R2-D2 is a <i>droid</i> that weighs 96 kg</1li>
<1i>Yoda weighs 66 kg</1i>
<1li>R4-P17 is a <i>droid</i></1i>

"

If you try to extract name, species, and weight directly, you end up with one vector of length
four and two vectors of length three, and no way to align them:

html |> html elements("b") [> html text2()

(1] "C-3P0" "R2-D2" "Yoda" "R4-P17"

html |> html_elements("i") [|> html_text2()

[1] "droid" "droid" "droid"

html |> html_elements(".weight") [> html_text2()

[1] l|167 kgll ll96 kgll "66 kgll

Instead, use html_elements () to find a element that corresponds to each character, then use
html_element () to extract each variable for all observations:

14

characters <- html |> html elements("1i")

characters |> html_element("b") [|> html_text2()

(1] "C-3P0" "R2-D2" "Yoda" "R4-P17"

characters |> html element("i") |> html_text2()

[1] "droid" "droid" NA "droid"

characters |> html_element(".weight") |> html_text2()

[1] "167 kg" "96 kg" "66 kg" NA

html_element () automatically fills in NA when no elements match, keeping all of the variables
aligned and making it easy to create a data frame:

data.frame (
name = characters |> html_element("b") |> html_text2(),
species = characters |> html_element("i") |> html_text2(),
weight = characters |> html_element(".weight") [|> html_text2()

)

name species weight
1 C-3P0 droid 167 kg
2 R2-D2 droid 96 kg
3 Yoda <NA> 66 kg
4 R4-P17 droid <NA>

1.7 Scraping house prices

(LIVE DEMO)

15

This is how you get read the HTML into R
url <- "https://www.bruhome.com/v3/buy.asp?p_=buy&id=&district=&propose=&property=&price=&lo
html <- read_html(url)

Extract the house prices

prices <-
html |[>
html_elements(".property-price") |[>
html text2()

Clean up

prices <-
str_remove_all(prices, "[70-9]") |> # Remove non-numeric characters
as.integer ()

Do same thing for number of beds, baths, location, and other remarks
beds <-

html |>

html_elements(".property-bed") [|>

html text2() |>

as.integer ()

baths <-
html |[>
html_elements(".property-bath") [>
html _text2() |>
as.integer ()

location <-
html [>
html_elements(".property-address") [|>
html_text2()

remarks <-
html |[>
html_elements("div p .mt-3") |[>
html_text2()

remarks <- tail(remarks, length(prices))

Put it all in a data frame
hsp_df <- tibble(

16

price = prices,

beds = beds,

baths = baths,
location = location,
remarks = remarks

Some pages require you to click a “load more” button to see all the data.

Extract the links

properties <-
html [>
html_elements(".property-link") |[>
html_attr("href")

Suppose I have a function that can extract the info I want from a single page
extract_info <- function(i) {
link <- pasteO("https://www.bruhome.com/v3/", properties[i])
html <- read_html(link)
out <-
html |[>
html_elements("p") [>
html_text2()
out [1]

Now what I could do is the following:

res <- c()

for (i in seq_along(properties)) {
res[i] <- extract_info(i)

¥

H OH O R

A better way:

res <- map(
.x = seq_along(properties),
£ extract_info,
.progress = TRUE

)

17

1.8 Cleaning using LLM

ADVANCED TOPIC!!!

remotes::install_github("AlbertRapp/tidychatmodels")
library(tidychatmodels)

chat <-
create_chat("ollama") |>
add_model("llama3.1") [>
add_message('What is love? IN 10 WORDS.') |[>
perform_chat ()

extract_chat(chat)

Try to prime it to clean the data set

clean_desc <- function(i) {
create_chat("ollama") |[>
add_model("llama3.1") [>
add_message(glue: :glue("

The following is a description of house for sale in Brunei obtained from the web site of

1. Built up area (usually in square feet) [NUMERIC]

2. Type of house (whether it is detached, semi-detached, terrace, apartment, or other) [

Please return semicolon separated values like this:
2500; detached

3000; semi-detached

2000; terrace

EBE o

NUMBERS SHOULD NOT CONTAIN comma (,) for thousands separator

Please only return these two values and nothing else. Do not return any other information.
NOTE: Some of these listings may be related to LAND or COMMERCIAL properties. In this case
IF YOU DO NOT SEE ANY DESCRIPTION it may mean that the description is missing. In this cas

IF YOU SEE MULTIPLE DESCRIPTIONS, please return the first one only.

18

{res[[i]]}

")) 1>

perform_chat() |>
extract_chat(silent = TRUE) |>
filter(role == "assistant") [>
pull (message)

Now map it over the descriptioms!
cleaned_descriptions <-

map (
.x = seq_along(res),
.f = clean_desc,

.progress = TRUE
)

Now add to the hsp_df
hsp_df$desc <- unlist(cleaned_descriptions)
hsp_df <-

hsp_df |>
mutate (
desc = unlist(res),
cleaned_desc = unlist(cleaned_descriptions)

) 1>
separate(cleaned_desc, into = c("sqft", "type"), sep = ";") [>
mutate(

sqft = as.integer(sqft),

type = case_when(

grepl("detached", type, ignore.case = TRUE) ~ "detached",
grepl("semi-detached", type, ignore.case = TRUE) ~ "semi-detached",
grepl("terrace", type, ignore.case = TRUE) ~ "terrace",
grepl("apartment", type, ignore.case = TRUE) ~ "apartment",
grepl("land", type, ignore.case = TRUE) ~ "land",
grepl("commercial", type, ignore.case = TRUE) ~ "commercial",

TRUE ~ NA

)
save(hsp_df, file = "data/hsp_df.RData")

19

1.9 Linear regression

In statistical modelling, the aim is to describe the relationship between one or more predictor
variables (usually denoted x) and a response variable (usually denoted y). Mathematically,
we can say

y=flz)+e

Here f is some regression function that we want to estimate, and € is an error term that
captures the difference between the true relationship and our estimate.

The simplest type of modelling is called linear regression, where we assume that the rela-
tionship between x and y is linear. That is,

y =By + B1xy + Boxy + -+ BT, + €.

When we ask software to estimate the § coefficients, it will find the values that optimise a
certain criterion (typically, one that yields the smallest error values). In R, you need to supply
two things:

1. A formula that describes the relationship between the variables.
2. The data frame that contains the variables.

1.9.1 Model fit
Here’s an example:
load("data/hsp_df.RData") # I saved this data set earlier and load it back

First clean the data a bit

htypes <- c("detached", "semi-detached", "terrace", "apartment")
hsp_mod_df <-

hsp_df |[>

filter(type %in’% htypes) [>

mutate (

type = factor(type, levels = htypes),

priceK = price / 1000, # Price in thousands

sqftK = sqft / 1000 # Square feet in thousands
) 1>
select(priceK, beds, baths, sqftK, type) |>
drop_na()

fit <- Im(priceK ~ beds + baths + sqftK + type, data = hsp_mod_df)
summary (fit)

20

Call:
Im(formula = priceK ~ beds + baths + sqftK + type, data = hsp_mod_df)

Residuals:
Min 1Q Median 3Q Max
-122.637 -38.483 -2.603 32.274 165.839

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -178.288 47.360 -3.765 0.000387 *x*x
beds 75.147 16.837 4.463 3.70e-05 *x*x*
baths 44 .832 10.470 4.282 6.92e-05 **xx*
sqftK -1.654 1.894 -0.873 0.386067
typeterrace -41.525 20.878 -1.989 0.051350 .
typeapartment 62.151 34.485 1.802 0.076615 .
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 56.59 on 59 degrees of freedom
Multiple R-squared: 0.7965, Adjusted R-squared: 0.7792
F-statistic: 46.18 on 5 and 59 DF, p-value: < 2.2e-16

1.9.2 Interpretation

Here’s a breakdown of the key components to aid your understanding:

1. Residuals: These represent the differences between the observed and predicted values of
priceK. The five-number summary (Min, 1Q, Median, 3Q, Max) helps you understand
the distribution of residuals. Ideally, the residuals should be symmetrically distributed
around zero, indicating a good model fit.

2. Coefficients: This section shows the estimated effect (Estimate) of each predictor on
pricekK:

o (Intercept): The expected priceK when all predictors are zero. Here, it’s -178.288,
but this value often doesn’t have a real-world interpretation if the predictor values
can’t actually be zero.

e beds: Each additional bedroom increases the expected priceK by about 75.15
(thousand).

o baths: Each additional bathroom increases the expected priceK by about 44.83
(thousand).

21

e sqftK: The effect of the square footage in thousands on priceK. Here, it’s not
statistically significant (p-value = 0.386), meaning it doesn’t contribute much to
predicting pricekK.

o type: This is a categorical variable with three levels. The coefficients for
typeterrace and typeapartment are relative to the reference category (likely
another property type not shown here, such as “detached house”). For example,
typeterrace lowers the expected priceK by 41.53 (thousand) compared to the
reference category.

3. Significance Codes: Indicators of statistical significance for each predictor:

o *xx highly significant (p < 0.001)

** significant (p < 0.01)

o * moderately significant (p < 0.05)

. marginally significant (p < 0.1)

None of these symbols indicate non-significance.

(]

4. Residual Standard Error: This is the standard deviation of the residuals. A smaller
value suggests a better fit, as it indicates that the observed values are closer to the fitted
values.

5. R-squared and Adjusted R-squared:

o R-squared (0.7965) indicates that about 79.65% of the variability in priceK is
explained by the model.

e Adjusted R-squared (0.7792) is a modified version of R-squared that accounts
for the number of predictors, providing a more accurate measure for models with
multiple variables.

6. F-statistic: This tests whether at least one predictor variable is significantly related to
the dependent variable. A p-value of < 2.2e-16 indicates the model is highly significant.

Key Takeaway: The model shows that beds and baths significantly predict priceK, while
sqftK does not have a significant effect. The type variable shows some variation, with
typeterrace having a marginally significant negative effect on priceK. Overall, the model
explains a large proportion of the variation in house prices.

1.9.3 Predictions

One of the main uses of a linear regression model is to make predictions. That is, given a set of
predictor values (typically unseen data), we can estimate the response variable. In the context
of the house price data, this means we can estimate the price of a house given its number of
bedrooms, bathrooms, square footage, and type.

First, let’s set up the data for a new house:

22

new_house <- tibble(

beds = 3,

baths = 2,

sqftK = 2.5,

type = factor("detached", levels = htypes)

Then, to predict the price, we run the following command:

predict(fit, newdata = new_house, interval = "prediction", level = 0.95)

fit lwr upr
1 132.6803 14.74783 250.6128

This also gives the 95% prediction interval, which is a range of values within which we expect
the true price to fall with 95% confidence. What we can see is that the model predicts the
price of the new house to be around 133,000 Brunei dollars, with a 95% prediction interval of
approximately [15,000, 251,000] Brunei dollars.

You might be wondering why the prediction interval is so wide. This is because the model is
uncertain about the price of a new house, given the limited information we have. Generally,
the more data you have, the narrower the prediction interval will be.

1 Note

You can get model predictions for the original data set by using the predict () without
newdata argument. Alternatively, fitted() works too.

1.10 More advanced models

Linear regression is a simple and powerful tool, but it has its limitations. If you were more
interested in predictions, then you might want to consider more advanced machine learning
(ML) models. Here are a couple of suggestions:

1. Random Forest: This is an ensemble learning method that builds multiple decision
trees and merges them together to get a more accurate and stable prediction.

2. Gradient Boosting Machines (GBM): GBM is another ensemble learning method
that builds multiple decision trees sequentially, with each tree correcting the errors of
the previous one.

3. Neural Networks: These are a set of algorithms that are designed to recognize patterns,
with the ability to model complex relationships between inputs and outputs.

23

1.10.1 Random forests

Random forests are popular because they are easy to use and generally provide good results.
Here’s how you can fit a random forest model to the house price data:

library(randomForest)

randomForest 4.7-1.1

Type rfNews() to see new features/changes/bug fixes.

Attaching package: 'randomForest'

The following object is masked from 'package:dplyr':

combine

The following object is masked from 'package:ggplot2':
margin

fit_rf <- randomForest(priceK ~ beds + baths + sqftK + type, data = hsp_mod_df)

With random forests, you don’t really get “beta” coefficients. So there’s no point running
summary (). Instead, it’s mainly used as a black box to obtain predicted values.

Let’s compare the predictions from the random forest model to the linear regression model:

tibble(
1m = predict(fit),
rf = predict(fit_rf)
) >
ggplot(aes(1lm, rf)) +
geom_point() +
geom_abline() +

labs(

x = "Linear regression",

y = "Random forest",

title = "Comparison of linear regression and random forest predictions"
) +
theme bw()

24

Comparison of linear regression and random forest predictions

500 ~

400 A

Random forest

300+

2004 ©

200 300 400 500 600
Linear regression

To see which model gives smaller errors, we can run the following code:

resid_lm <- hsp_mod_df$priceK - predict(fit)
resid_rf <- hsp_mod_df$priceK - predict(fit_rf)

Residual sum of squares
sum(resid_1m ~ 2)

[1] 188934.9
sum(resid_rf =~ 2)
[1] 211841.9

In this case, the linear regression model has a smaller residual sum of squares, indicating that
it fits the data better.

Out of curiosity, let’s see the predictions for the new house using the random forest model:

predict(fit_rf, newdata = new_house,)

1
234.1741

Which seems very different to the 1m() predictions.

25

References

26

2 Geographical Information System (GIS) data

Libraries needed:

library(tidyverse)

remotes::install_github("propertypricebn/bruneimap")
library (bruneimap)

library(ggrepel)

library(kernlab)

library(osrm)

library(osmdata)

More info:

o https://github.com/propertypricebn/bruneimap

1 Note

The {bruneimap} package contains the following data sets:

dis_sf: Brunei districts geometries.
mkm_sf: Brunei mukim geometries.
kpg_sf: Brunei kampong geometries.
brn_sf: Brunei outline geometries.
bn_census2021: Brunei 2021 census data.

U N

2.1 Introduction

@ What we’ll learn

e Types of GIS data and how these are handled in R.
« Difference between spatial and non-spatial data analysis.
e Importance of geocoding your data for spatial analysis.

Roughly speaking, there are 4 types of GIS data.

27

https://github.com/propertypricebn/bruneimap

1. Points

o Having (X,Y’) coordinates (latitude, longitude, or projected coordinates, and are
“zero-dimensional”.
o E.g. shopping malls, hospitals, outbreaks, etc.

2. Lines

e A collection of points that form a path or a boundary. Has length.
o E.g. roads, rivers, pipelines, etc.

3. Polygons

e A closed area made up of line segments or curves.
o E.g. countries, districts, buildings, etc.

4. Raster

o Pixelated (or gridded) data where each pixel is associated with a geographical area
and some measurement.
o E.g. satellite images, elevation data, etc.

The first three are usually referred to as vector data. GIS data can be stored in various formats
such as .shp or .geojson. The handling of GIS data (at least vector type data) is facilitated
by the {sf} package (Pebesma and Bivand 2023) which uses the simple features standard.

1 Note

Simple features refers to a formal standard (ISO 19125-1:2004) that describes how objects
in the real world can be represented in computers, with emphasis on the spatial geometry
of these objects.

It’s helpful to think about the shape of this spatial data set. As an example, here’s a random

slice of 10 kampong-level population data for Brunei:

left_join(

kpg_sf,
bn_census2021,
join_by(id, kampong, mukim, district)
[>
select(
kampong, district, population, geometry
) 1>

slice_sample(n = 10)

Simple feature collection with 10 features and 3 fields

28

Geometry type: POLYGON

Dimension: XY

Bounding box: xmin: 114.2181 ymin: 4.336794 xmax: 115.1462 ymax: 4.996524
Geodetic CRS: WGS 84

A tibble: 10 x 4

kampong district population geometry

<chr> <chr> <dbl> <POLYGON [°]>
1 Pulau Baru-Baru Brunei ~ NA ((115.0413 4.908514, 115~
2 Kg. Pandan B Belait 3859 ((114.2202 4.580051, 114~
3 Paya Pekan Tutong Tutong NA ((114.6965 4.800737, 114~
4 Kg. Kukub Belait 19 ((114.7368 4.396723, 114~
5 Pulau Chermin Brunei -~ NA ((115.025 4.931068, 115.~
6 Kg. Katok Brunei ~ 2427 ((114.8911 4.920808, 114~
7 Perumahan Negara Rimba Kawasan~ Brunei ~ 2861 ((114.9186 4.969497, 114~
8 STKRJ Lambak Kiri Brunei ~ 2296 ((114.944 4.995923, 114.~
9 Kg. Sungai Radang Temburo~ 62 ((115.1452 4.710494, 115~
10 Kg. Maraburong Tutong 457 ((114.777 4.831059, 114.~

Spatial data analysis must have these two components:

1. The study variables (in the above example, this is population data).
2. GIS data regarding that study variable.

If we only have 1 without 2, then it really is just a regular data analysis (stating the obvious).
Adding the GIS data is a process called “geocoding” the data points.

1 Note

In R, geocoding using {tidyversel} can be achieved using the dplyr::left_join() or
similar xxx_join() family of functions.

2.2 (MULTI)POINT data

@ What we’ll learn

e Loading data sets in R using readr: :read_csv().
o Identifying data types and their implications.

Use the data from Jaafar and Sukri (2023) on the physicochemical characteristics and texture
classification of soil in Bornean tropical heath forests affected by exotic Acacia mangium. There
are three datasets provided.

29

1. GIS data (WGS84 coordinates) of all study plots.

2. Soil physicochemical property data. This contains details of soil physical, chemical,
nutrient concentration of the three habits studied.

3. Soil texture classification. Provides details on the classification of the soil texture in the
habitats studied.

We will first load the data sets in R.

Load the data sets

soil_gps <- read_csv(
"data/8389823/GPS - Revised.csv",
IMPORTANT!!! The csv file has latinl encoding as opposed to UTF-8
locale = readr::locale(encoding = "latinl")

soil_physico <- read_csv("data/8389823/S0il physicochemical properties.csv")
soil_texture <- read_csv("data/8389823/Soil texture classification.csv")

2.2.1 Clean up the point data

@ What we’ll learn

o Highlighting the need for cleaning and preprocessing data.
o Using glimpse () to peek at the data.

o Using mutate () to change stuff in the data set.

Using str() to look at the structure of an R object.

Let’s take a look at the point data set.

glimpse(soil_gps)

Rows: 18

Columns: 5

$ Forest_type <chr> "Kerangas", "Kerangas", "Kerangas", "Kerangas", "Kerangas-~
$ Habitat_type <chr> "Intact", "Intact", "Intact", "Intact", "Intact", "Intact~
$ Plot_name <chr> "KU1", "KU2", "KU3", "KU4", "KU5", "KUe6", "KI1", "KI2", "~
$ Latitude <chr> "4° 35' 53.40\"N", "4° 35' 38.37\"N", "4° 35' 53.89\"N", ~
$ Longitude <chr> "114° 30' 39.09\"E", "114° 31' 05.89\"E", "114° 30' 38.90~

The first three columns are essentially the identifiers of the plots (forest type, habitat type,
and the unique identification code for the study plot). However, the latitude and longitude

30

https://en.wikipedia.org/wiki/World_Geodetic_System

needs a bit of cleaning up, because it’s currently in character format. This needs to be in
a formal Degree Minute Second DMS class that R can understand. For this we will use the
sp: :char2dms () function.

As an example let’s take a look at the first latitude.

x <- soil_gps$Latitude[1]
X

[1] "4° 35' 53.40\"N"

convert it using sp::char2dms() function
x <- sp::char2dms(x, chd = "°")
X

[1] 4d35'53.4"N

str(x)

Formal class 'DMS' [package "sp"] with 5 slots
..@ WS : logi FALSE
..Q@ deg: int 4
..Q@ min: int 35
..Q@ sec: num 53.4
..@ NS : logi TRUE

This is a special class that R understands as being a latitude from Earth. To convert it to
decimal, we just do as.numeric():

as.numeric(x)

[1] 4.598167

Now let’s do this for all the values in the soil_gps data. We will use the dplyr: :mutate()
function in a pipeline.

soil_gps <-
soil_gps |>
mutate (
Latitude = as.numeric(sp::char2dms(Latitude, chd = "°")),
Longitude = as.numeric(sp::char2dms(Longitude, chd = "°"))

)
soil_gps

31

A tibble: 18 x 5
Forest_type Habitat_type Plot_name Latitude Longitude

<chr> <chr> <chr> <dbl> <dbl>
1 Kerangas Intact KU1 4.60 115.
2 Kerangas Intact KU2 4.59 115.
3 Kerangas Intact KU3 4.60 115.
4 Kerangas Intact KU4 4.63 114.
5 Kerangas Intact KU5 4.60 115.
6 Kerangas Intact KU6 4.60 115.
7 Kerangas Invaded KI1 4.59 115.
8 Kerangas Invaded KI2 4.59 115.
9 Kerangas Invaded KI3 4.59 115.
10 Kerangas Invaded KI4 4.59 115.
11 Kerangas Invaded KI5 4.59 115.
12 Kerangas Invaded KI6 4.59 115.
13 Kerangas Plantation AP1 4.59 115.
14 Kerangas Plantation AP2 4.59 115.
15 Kerangas Plantation AP3 4.59 115.
16 Kerangas Plantation AP4 4.59 115.
17 Kerangas Plantation AP5 4.59 115.
18 Kerangas Plantation AP6 4.59 115.

2.2.2 Preliminary plot of the data

@ What we’ll learn

o Structure of a ggplot() (grammar of graphics).
o Using geom_sf () to plot the GIS data, and adding points using geom_point ().

Using the data contained in the {bruneimap} package, we can plot the study areas on a map
of Brunei. Use either the brn_sf, dis_sf, mkm_sf or kpg_sf data sets.

ggplot(brn_sf) +

geom_sf() +
geom_point(data = soil_gps, aes(Longitude, Latitude))

32

5.0°N - [N

4.8°N -

4.6°N -

Latitude

4.4°N -

4.2°N -

4.0°N-
114.2°E 114.4°E 114.6°E 114.8°E 115.0°E 115.2°E 115.4°E
Longitude

We can zoom in a bit.. but we have to find out manually the correct bounding box. To do
this, we can either:

1. Manually find the minimum and maximum values of the latitude and longitude.
2. Convert the soil_gps data set to an sf object and use the st_bbox () function.

Manual way
c(

xmin = min(soil_gps$Longitude), xmax = max(soil_gps$Longitude),
min(soil_gps$Latitude), ymax = max(soil_gps$Latitude)

ymin

)

xmin xmax ymin ymax
114.473356 114.529297 4.592817 4.630242

Using the sf object
soil_sf <- st_as_sf(soil_gps, coords = c("Longitude", "Latitude"), crs = 4326)
st_bbox(soil_sf)

xmin ymin xXmax ymax
114.473356 4.592817 114.529297 4.630242

33

Now that we’ve found the bound box, we can plot better:

ggplot (mkm_sf) +
geom_sf() +
geom_sf(data = dis_sf, fill = NA, col = "black", linewidth = 1) +
geom_point(data = soil_gps, aes(Longitude, Latitude)) +
geom_text_repel(
data = soil_gps,
aes(Longitude, Latitude, label = Plot_name),
box.padding = 0.5,
max.overlaps = 30
)+
coord_sf (
x1lim

c(114.4, 114.6),
c(4.5, 4.7)

ylim
)

4.70°N -

4.65°N -
Kl4

4.60°N -

Latitude

KIS

4.55°N -

4.50°N -

1 1 1 1 1
114.40°E 114.45°E 114.50°E 114.55°E 114.60°E
Longitude

34

2.2.3 Merge with the study data

@ What we’ll learn

e Using left_join() to merge two data sets together.
o Using geom_jitter () to plot the study variables that are overlapping.

Let’s take a look at the data set.

glimpse(soil_physico)

Rows: 144

Columns: 16

$ Habitat_type <chr> "Intact", "Intact", "Intact", "Intact", "Int~
$ Plot_name <chr> "KU1", "KU1", "KU1", "KU1", "KU1", "KU1", "K~
$ Subplot_name <chr> "A", "A", "B", "B", "C", "C", "D", "D", "A",6~
$ Soil_depth <chr> "0-15", "30-50", "O-15", "30-50", "O-15", "3~
$ Nitrogen <dbl> 0.617, 0.188, 0.663, 0.200, 0.465, 0.255, 0.~
$ Phosphorus <dbl> 0.248, 0.129, 0.259, 0.295, 0.172, 0.145, 0.~
$ Magnesium <dbl> 0.000, 0.045, 0.054, 0.035, 0.079, 0.043, 0.~
$ Calcium <dbl> 0.167, 0.187, 0.148, 0.113, 0.253, 0.229, 0.~
$ Potassium <dbl> 0.059, 0.037, 0.054, 0.022, 0.098, 0.033, 0.~
$ Exchangable_magnesium <dbl> 0.009, 0.004, 0.007, 0.005, 0.029, 0.014, 0.~
$ Exchangable_calcium <dbl> 0.010, 0.009, 0.008, 0.009, 0.109, 0.041, 0.~
$ Exchangable_potassium <dbl> 0.101, 0.085, 0.092, 0.087, 0.101, 0.090, O.~
$ Available_phosphorus <dbl> 0.012, 0.012, 0.013, 0.012, 0.013, 0.014, 0.~
$ pH <dbl> 2.3, 2.7, 2.0, 2.0, 2.6, 2.5, 2.3, 2.1, 1.0,~
$ Gravimetric_water_content <dbl> 5.911, 3.560, 10.860, 5.082, 6.963, 4.549, 5~
$ Organic_matter <dbl> 4.559, 1.399, 4.523, 2.309, 3.131, 2.209, 3.~
glimpse(soil_texture)

Rows: 144

Columns: 8

$ Habitat_type <chr> "Intact", "Intact", "Intact", "Intact", "Intact~
$ Plot_name <chr> "KU1i", "KU1i", "KU1i", "KU1", "KU2", "KU2", "KU2"~
$ Subplot_name <chr> "A", "B", "C", "D", "A", "B", "C", "D", "A", "B~
$ Soil_depth <chr> "0-15", "O-15", "0-15", "O0-15", "O0-15", "0-15",~
$ Clay <dbl> 0.0, 0.0, 0.0, 0.0, 0.0, 2.5, 2.5, 2.5, 0.0, 2.~
$ Silt <dbl> 2.5, 0.0, 0.0, 2.5, 0.0, 0.0, 2.5, 2.5, 7.5, 7.~
$ Sand <dbl> 97.5, 100.0, 100.0, 97.5, 100.0, 97.5, 95.0, 95~
$ Texture classification <chr> "Sand", "Sand", "Sand", "Sand", "Sand", "Sand",~

35

The soil_physico and soil_texture data sets contain the same columns, so we might as

well merge them together. We will use the dplyr::left_join() function.

Actually I just want to merge these two together
soil_df <- left_join(

soil_physico,

soil_texture,

by = join_by(Habitat_type, Plot_name, Subplot_name, Soil_depth)

)
soil_df

A tibble: 144 x 20

Habitat_type Plot_name Subplot_name Soil_depth Nitrogen Phosphorus Magnesium

<chr> <chr> <chr> <chr>
1 Intact KU1 A 0-15
2 Intact KU1 A 30-50
3 Intact KU1 B 0-15
4 Intact KU1 B 30-50
5 Intact KU1 C 0-15
6 Intact KU1 C 30-50
7 Intact KU1 D 0-15
8 Intact KU1 D 30-50
9 Intact KU2 A 0-15
10 Intact KU2 A 30-50

i 134 more rows

<dbl>
.617
.188
.663
.2
.465
.255
.285
.057
.37
.114

O O O O O O O o oo

i 13 more variables: Calcium <dbl>, Potassium <dbl>,

Exchangable_magnesium <dbl>, Exchangable_calcium <dbl>,
Exchangable_potassium <dbl>, Available_phosphorus <dbl>, pH <dbl>,
Gravimetric_water_content <dbl>, Organic_matter <dbl>, Clay <dbl>,
Silt <dbl>, Sand <dbl>, Texture_classification <chr>

H H

<dbl>
.248
.129
.259
.295
172
.145
.225
.207
.135
.168

O O O O O O O O O o

<dbl>

.045
.054
.035
.079
.043
.052
.031
.038
.021

O O OO O O O o oo

Once we’ve done that, the soil_df data set (the study variables) is actually missing the spatial
data. We need to geocode it with the soil_gps data set. Again, dplyr::left_join() to the

rescue!

soil_df <- left_join(

soil_df,

soil_gps,

by = join_by(Habitat_type, Plot_name)
)

36

Now we're in a position to plot the study variables on the map. Note that there are only 18
plots in the soil_gps data set, and each plot has repeated measurements. That means when
we plot it, it will overlap and look like a single point. So a good thing to do is to jitter the
point so it’s easier to see.

ggplot (kpg_sf) +
geom_sf(fill = NA) +
geom_jitter(
data = soil_df,
aes(Longitude, Latitude, col = Nitrogen, size = Nitrogen,
shape = Habitat_type),
width = 0.001, height = 0.001, alpha = 0.7
) +
coord_sf(
xlim = c(114.46, 114.54),
ylim = c(4.58, 4.64)
) +

scale_color_viridis_c() +

guides(size = "none")
4.64°N - Habitat_type
® Intact
4.63°N -) A Invaded
= Plantation
4.62°N -
[
U .
2 4.61°N- Nitrogen
_3 1.5
4.60°N -
v
4.59°N -
0.5
4.58°N -
1 1 1 1 1 OO
114.46°E 114.48°E 114.50°E 114.52°E 114.54°E

Longitude

37

2.3 Line data ((MULTI)LINESTRING)

@ What we’ll learn

o How to load spatial data sets using sf::read_sf() and editing the CRS using
sf::st_transform().

o How to filter data using dplyr::filter().

e How to plot line data using ggplot2: :geom_sf ().

For this example, we’ll play with the road network shape file obtained from OpenStreetMaps.
The data is in geojson format, so let’s import that into R.

brd <-
read_sf("data/hotosm_brn_roads_lines_geojson/hotosm_brn_roads_lines_geojson.geojson") |>
st_transform(4326) # SET THE CRS!!! (WGS84)

glimpse (brd)

Rows: 25,570

Columns: 15

$ name <chr> "Simpang 393", "Simpang 405", NA, NA, NA, NA, "Lebuhraya Tu-~
$ "name:en” <chr> NA, NA, NA, NA, NA, NA, "Tutong-Telisai Highway", NA, NA, N~
$ highway <chr> "residential", "residential", "service", "residential", "tr~
$ surface <chr> NA, NA, NA, NA, NA, "asphalt", "asphalt", NA, NA, NA, "asph-~
$ smoothness <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ width <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ lanes <chr> NA, NA, NA, NA, NA, "1", "2", NA, NA, NA, "2", NA, NA, NA, ~
$ oneway <chr> NA, NA, NA, NA, NA, "yes", "yes", NA, NA, NA, "no", "yes", ~
$ bridge <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ layer <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ source <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ "name:ms”~ <chr> NA, NA, NA, NA, NA, NA, "Lebuhraya Tutong-Telisai", NA, NA,~
$ osm_id <int> 386886618, 481030903, 512405939, 664532755, 442044892, 6651~
$ osm_type <chr> "ways_line", "ways_line", "ways_line", "ways_line", "ways_1l~
$ geometry <LINESTRING [°]> LINESTRING (114.6236 4.7910..., LINESTRING (114.~

There are 25,570 features in this data set, which may be a bit too much. Let’s try to focus on
the major roads only. This information seems to be contained in the highway column. What’s
in it?

table (brd$highway)

38

bridleway construction cycleway footway 1living_street

1 28 73 898 10
motorway motorway_link path pedestrian primary
116 152 140 60 865
primary_link residential road secondary secondary_link
332 9023 1 446 79
service steps tertiary tertiary_link track
9876 53 586 59 442
trunk trunk_link unclassified
460 310 1560

According to this wiki, In OpenStreetMap, the major roads of a road network are sorted on
an importance scale, from motorway to quaternary road.

39

https://wiki.openstreetmap.org/wiki/OpenStreetMap_Carto/Lines

Drawing

Description

Wiki page

Motorway, the most important
roads in a road network.
Equivalent to freeway, Autobahn
(Germany), etc.

highway=motorway

The link roads (sliproads / ramps)
leading to and from a motorway

highway=motorway_link

Motorway under construction /
Motorway link under construction

highway=construction + construction=motorway /
highway=construction + construction=motorway_1link

Trunks, the most important roads
in a road network that aren't
motorways

highway=trunk

The link roads (sliproads / ramps)
leading to and from a trunk
highway

highway=trunk_link

Trunk under construction / Trunk
link under construction

highway=construction + construction=trunk/
highway=construction + construction=trunk_Llink

Primary road

highway=primary

Connecting slip roads/ramps of
primary highways

highway=primary_Llink

brd_mjr <-
brd |>

filter(highway %in% c("motorway", "trunk", "primary", "secondary"))

brd_mjr

Simple feature collection with 1887 features and 14 fields
Geometry type: LINESTRING

40

Dimension: XY

Bo
Ge
#

©O© 0 N O O W N+~ ¥

10
#
#
#

unding box: =xmin: 114.1906
odetic CRS: WGS 84

A tibble: 1,887 x 15

name ‘name:en” highway
<chr> <chr> <chr>
Lebuhra~ Tutong-T~ trunk
Lebuhra~ Tutong-T~ trunk
Jalan S~ <NA> primary
Jalan S~ <NA> primary
Lebuh R~ Seria-Be~ trunk
<NA> <NA> trunk
<NA> <NA> primary
Lebuh R~ Seria-Be~ trunk
<NA> <NA> primary

Lebuhra~ Telisai-~ trunk
i 1,877 more rows

i 5 more variables: source <chr>,
osm_type <chr>, geometry <LINESTRING [°]>

And now a plot of these roads.

gg

plot () +
geom_sf (data
geom_sf (data

brn_sf) +

ggsci::scale_colour_npg()

ymin: 4.

surface
<chr>

asphalt
asphalt
asphalt
asphalt
asphalt
asphalt
asphalt
asphalt
asphalt
asphalt

516642 xmax: 11

smoothness width

<chr>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>

41

<chr
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>

brd_mjr, aes(col = highway), size =
scale_colour_viridis_d(option = "turbo")

5.2021 ymax: 5.037115

> <chr> <chr>
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

NNNEFENNDNDDNDWN

“name:ms”~ <chr>, osm_id <int>,

0.5) +

<chr>
<NA>
<NA>
yes
<NA>
<NA>
<NA>
<NA>
yes
<NA>
<NA>

lanes oneway bridge layer

<chr>
<NA>
<NA>
1
<NA>
<NA>
<NA>
<NA>
1
<NA>
<NA>

5.0°N -

4.8°N -
highway
4.6°N - D mOtOFway
primary
— secondary
4.4°N -
— trunk
4.2°N -
4.0°N -

114.2°E 114.4°E 114.6°E 114.8°E 115.0°E 115.2°E 115.4°E

With this, I asked ChatGPT what kind of spatial analyses can be done on this data set.

said, when paired with appropriate data, we can do things like:

1. Network Connectivity Analysis

e Assess reachability and identify disconnected road network components.
2. Accessibility and Service Area Analysis

¢ Determine service areas and catchment areas for essential services.
3. Traffic Simulation and Management

e Simulate traffic flow to identify bottlenecks and suggest optimal routing.
4. Environmental Impact Assessment

o Estimate vehicular emissions and model noise pollution from roads.
5. Urban and Regional Planning

o Examine land use compatibility and assess infrastructure development needs.
6. Safety Analysis

o Identify accident hotspots and assess pedestrian safety.
7. Economic Analysis

o Evaluate economic accessibility and the impact of road projects.

42

It

Let’s pick one of these: Calculate the distance between the centroid of several regions and the
major hospital in the Belait district. This analysis guides urban and healthcare planning by
pinpointing areas with inadequate access to emergency services, enabling targeted infrastruc-
ture and service improvements.

2.3.1 Road networks in Belait region

@ What we’ll learn

e Manipulating GIS data using sf::st_intersection() and the like. Useful for
reorganising the spatial structure (without having to do this in QGIS or ArcGIS).

e Sampling points from a line data set.

e Calculating distances between points and lines using {osrm} package.

First we “crop” the road network to the Belait region.

brd_belait <- st_intersection(
brd,
filter(dis_sf, name == "Belait")

)

Warning: attribute variables are assumed to be spatially constant throughout
all geometries

ggplot (brd_belait) +
geom_sf() +
geom_sf(data = filter(dis_sf, name == "Belait"), fill = NA)

43

4.7°N -

4.6°N -

4.5°N -

4.4°N -

4.3°N -

4.2°N -

4.1°N -

4.0°N -

114.2°E 114.4°E 114.6°E 114.8°E

If we were to sample random points from the Belait polygon, we might get non-sensical areas
like the extremely rural areas or forest reserves. So the idea is to sample random points from
the road network itself. For this, we need a function that will get us a random point on the
path itself.

get_random_point <- function(linestring) {
coords <- st_coordinates(linestring)
samp_coord <- coords[sample(nrow(coords), 1), , drop = FALSE]
samp_coord[, 1:3]

}

get_random_point (brd_belait$geometry[1])

X Y L1
114.241941 4.594271 1.000000

Once we have this function, we need to map() this function onto each of the linestrings in
the brd_belait data set. The resulting list of points is too large! So we will just sample 100
points (you can experiment with this number).

random_points <-
map (brd_belait$geometry, get_random_point) [>
bind_rows() |>
slice_sample(n = 100)

44

What we have now is a data frame of 100 random points on the road network in the Belait
district. We will use the {osrm} package to calculate the distance between these points and
the Suri Seri Begawan Hospital in Kuala Belait. The output will be three things: 1) The
duration (minutes); 2) The distance (km); and 3) a LINESTRING object that represents the
path to get to the hospital. Unfortunately the osrmRoute () function is not vectorised, i.e. we
have to do it one-by-one for each of the 100 points. Luckily, we can just make a for loop and
store the results in a list.

suriseri <- c(114.198778, 4.583444)

res <- list()
for (i in 1:100) {

res[[i]] <- osrmRoute(src = random_points[i, 1:2], dst = suriseri, overview = "full")
+
res <-

bind_rows(res) [>

as_tibble() |>

st_as_sf()
res

Simple feature collection with 100 features and 4 fields

Geometry type: LINESTRING

Dimension: XY

Bounding box: =xmin: 114.1917 ymin: 4.32647 xmax: 114.694 ymax: 4.6949
Geodetic CRS: WGS 84

A tibble: 100 x 5

src dst duration distance geometry
<chr> <chr> <dbl> <dbl> <LINESTRING [°]1>
11 dst 8.18 6.08 (114.2209 4.57636, 114.2209 4.57636, 114.2207 ~
21 dst 16.4 11.6 (114.2952 4.60689, 114.2952 4.60689, 114.2952 ~
31 dst 43.9 49.4 (114.504 4.56998, 114.504 4.56999, 114.5038 4.~
41 dst 7.42 5.19 (114.2395 4.59226, 114.2395 4.59226, 114.2395 ~
51 dst 6.52 4.69 (114.2329 4.58381, 114.2328 4.58377, 114.2324 ~
61 dst 30.0 34.4 (114.4344 4.6501, 114.4344 4.6501, 114.4348 4.~
71 dst 33.6 39.2 (114.4911 4.67538, 114.4911 4.67491, 114.4915 ~
8 1 dst 4.94 3.21 (114.2224 4.58747, 114.2228 4.58751, 114.2227 ~
91 dst 14.0 10.0 (114.2817 4.60503, 114.2816 4.60503, 114.2816 ~
10 1 dst 34.2 41.9 (114.5294 4.67255, 114.5294 4.67252, 114.5294 ~

i 90 more rows

So with all that done, we can now plot the paths taken by the 100 random points to the
hospital. The map gives us an indication of which areas are underserved by the hospital,

45

and can guide urban and healthcare planning by pinpointing areas with inadequate access to
emergency services, enabling targeted infrastructure and service improvements.

ggplot(res) +

geom_point(data = random_points, aes(x = X, y = Y), col = "red") +
geom_sf(data = filter(kpg_sf, district == "Belait"), fill = NA) +
geom_sf (aes(col = duration), linewidth = 1.2, alpha = 0.7) +
geom_point(x = suriseri[l], y = suriseri[2], col = "red3", pch = "X",

size = 3) +
scale _colour viridis _c()

4.7°N -

4.6°N -

4.5°N - duration
— 120

4.4°N - jg—?c 90

60
4.3°N -

30
4.2°N -
4.1°N -
4.0°N -

114.2°E 114.4°E 114.6°E 114.8°E
Improving the analysis

o Weight analysis by populous areas. Outcalls to hospitals can be modelled using a Poisson
distribution with the population as the rate parameter.

o Use a more sophisticated routing algorithm that accounts for traffic conditions and road
quality (am vs pm, weekends vs weekdays, etc.).

e Simpler to analyse at the kampong or mukim level?

46

2.4 Areal data ((MULTI)POLYGONS)

What we’ll learn

o Represent statistical data using colour mapping symbology (choropleth)
o Use ggplot2::geom_label() or ggrepel::geom_label_repel() to add labels to

the map

o Using a binned colour scale, e.g. ggplot2: :geom_scale_fill_viridis_b()

When your study data is made up a finite number of non-overlapping areas, then you can
represent them as polygons in R. This is the case for the kampong and mukim data in Brunei.
As an example, let us look at the population of each kampong in Brunei. This dataset comes
from the 2021 Brunei Census data (DEPS 2022)

glimpse (bn_census2021)

Rows

. 365

Columns: 11

$ id <dbl>
$ kampong <chr>
$ mukim <chr>
$ district <chr>
$ population <dbl>
$ pop_male <dbl>
$ pop_female <dbl>
$ pop_bruneian <dbl>
$ pop_pr <dbl>
$ household <dbl>
$ occ_liv_q <dbl>

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 2~
"Kg. Biang", "Kg. Amo", "Kg. Sibut", "Kg. Sumbiling Baru"~
"Mukim Amo", "Mukim Amo", "Mukim Amo", "Mukim Amo", "Muki~
"Temburong", "Temburong", "Temburong", "Temburong", "Temb-~
75, 394, 192, 91, 108, 143, 199, 123, 95, 90, 92, 2427, 4~
46, 218, 98, 48, 60, 68, 115, 65, 52, 46, 73, 1219, 252, ~
29, 176, 94, 43, 48, 75, 84, 58, 43, 44, 19, 1208, 150, 2~
37, 280, 174, 55, 57, 64, 114, 88, 63, 35, 37, 15657, 235,~
33, 83, 17, 24, 41, 64, 64, 28, 29, 32, 2, 179, 3, 67, 32~
13, 83, 37, 23, 23, 23, 38, 26, 26, 23, 14, 517, 76, 691,~
13, 62, 27, 16, 22, 21, 37, 22, 12, 23, 14, 492, 71, 681,~

Each row of the data refers to a kampong-level observation. While there are unique identifiers
to this (id, kampong, mukim, district), we would still need to geocode this data set so that
we can do fun things like plot it on a map. Let’s use (again) left_join() to do this.

bn_p
le

)

op_sf <-
ft_join(

kpg_sf,
bn_census2021,
by = join_by(id,

kampong, mukim, district)

47

Great. Let’s take a look at the population column. It would be very interesting to see where
most of the 440,704 people of Brunei live!

ggplot (bn_pop_sf) +
geom_sf (aes(fill = population)) +
scale fill viridis c(na.value = NA)

5.0°N -
4.8°N - :
population

12500

4.6°N - 10000
7500

4.4°N - 5000
2500

4.2°N -

4,0°N -

1 1 1 1 1 1 1
114.2°E 114.4°E 114.6°E 114.8°E 115.0°E 115.2°E 115.4°E

As expected, there are “hotspots” of population in the Brunei-Muara district, and to a lesser
extent in the Belait district. We can make this graph a bit better by binning the population
values. It seems to be dominated by a lot of these low value colours. Let’s take a look at this
further by inspecting a histogram.

ggplot (bn_pop_sf) +
geom_histogram(aes(population), binwidth = 100)

Warning: Removed 75 rows containing non-finite outside the scale range
("stat_bin() 7).

48

count

So maybe we can bin the population into 4 categories: < 100, 101-1000, 1001-10000, and
100004. For this we directly use the scale_fill_viridis_b() and adjust the breaks. Oth-
erwise we would have to cut() the population column and then use scale_fill_manual().
We also added the names of the top 10 most populous kampongs to the map using

60 -

40~

20-

o] P

0 5000
population

ggrepel: :geom_label _repel().

kpg_labels_sf <-

bn_pop_sf |>
arrange (desc(population)) |>
slice_head(n = 10)

bn_pop_sf |>

filter(population > 50) [>
ggplot() +

geom_sf (aes(fill = population), col = NA, alpha
geom_sf(data = kpg_sf, fill = NA, col = "black") +
ggrepel: :geom_label_repel(

data = kpg_labels_sf,

aes(label = kampong, geometry = geometry),
stat = "sf_coordinates",

inherit.aes = FALSE,

box.padding = 1,

size = 2,

max.overlaps = Inf

49

) +

scale_fill viridis_b(
name = "Population",
na.value = NA,
labels = scales::comma,

breaks = c(0, 100, 1000, 10000, 20000)

limits = c(0, 12000)
) +
theme_bw()
5.0°N 4
4.8°N Population
4.6°N 4 10,000

>
; 1,000
4.4°N s "“
. 100

Kg. Kilanas
J
4.2°N 1
4.0°N A

T T T T T T T
114.2°E 114.4°E 114.6°E 114.8°E 115.0°E 115.2°E 115.4°E
X

2.5 OpenStreetMap data

@ What we’ll learn

e How to scrape OpenStreetMap data using the {osmdata} package.

The {osmdata} package is a very useful tool for scraping OpenStreetMap data. It allows you
to download data from OpenStreetMap and convert it into an sf object. The package is built
on top of the osmdata API, which is a wrapper around the Overpass API. The Overpass API
is a read-only API that allows you to query OpenStreetMap data. Conveniently, we do not
need an API key.

50

2.5.1 EXAMPLE: How to get all the schools in Brunei

When we go to https://www.openstreetmap.org/ website, we can search for some key terms.
For example, if we search for “Sekolah Rendah Kiarong”, we see the following:

eee M~ < o @

openstreetmap.org ¢ ® Q @ +

»#+ Way: Datu Ratna Haji Muhammad Jaafar Primary School (309023494) | OpenStreetMap

3 OpenStreetMap

Muhammad Jaafar
Primary School
(309023494)

Version #2

Areas:Beribi;Gadong;Kiarong;Kiulap;Jerud
Edits: building traces; road
traces+classifications; restrictions;Dato
Ratna to Datu Ratna;

Simpang 253472

Edited over 9.years ago by raito

Changeset #27676493
Tags
addr:place Kiarong P
addr:street Jalan Datu Ratna /éé?./-
Sekolah Rendah =
alt_name '
Kiarong
Kiarong Primary oo
It :
alt_name:en School i
Shamis
amenity school E[E:‘,?"F“

Sekolah Rendah
name Datu Ratna Haji
Muhammad Jaafar

Datu Ratna Haiji

name:en Muhammad Jaafar
Primary School
source Bing; survey

v
|50m | E

w
100 ft 2

ore ™ | Login Sign Up ‘

B

1

=

i

g
-

Sekolah
Rendah,
Datu Ratna,
Haji Muhammad.
Jaafar

= Simpang 14-52

28 a0 aa a z
© OpenStreethMap contributors ¥ Make a Donation. Website and API terms

0

Highlighted in red is the polygon that represents the school.

information in the “Tags” section such as:

e addr:place = Kiarong

e addr:street = Jalan Datu Ratna

e alt_name = Sekolah Rendah Kiarong

e alt_name:en = Kiarong Primary School
e amenity = school

51

Furthermore, we have some

e etc.

The {osmdata} package allows us to query this information. To replicate this ‘GUI’ experience
using code, we do the following:

q <
opq("brunei") |[>
add_osm_feature(

key = '"name",
value = "Sekolah Rendah Datu Ratna Haji Muhammad Jaafar"
) 1>
osmdata_sf ()
print(q)

Object of class 'osmdata' with:
$bbox : 4.002508,113.017925,6.546584,115.3635623
$overpass_call : The call submitted to the overpass API
$meta : metadata including timestamp and version numbers

$osm_points : 'sf' Simple Features Collection with 16 points
$osm_lines : NULL
$osm_polygons : 'sf' Simple Features Collection with 1 polygons

$osm_multilines : NULL
$osm_multipolygons : NULL

It has found the school. To extract the information, let’s look at the $osm_polygons entry:

glimpse(q$osm_polygons)

Rows: 1

Columns: 10

$ osm_id <chr> "309023494"

$ name <chr> "Sekolah Rendah Datu Ratna Haji Muhammad Jaafar"
$ “addr:place™ <chr> "Kiarong"

$ “addr:street” <chr> "Jalan Datu Ratna"

$ alt_name <chr> "Sekolah Rendah Kiarong"

$ “alt_name:en” <chr> "Kiarong Primary School"

$ amenity <chr> "school"

$ “name:en” <chr> "Datu Ratna Haji Muhammad Jaafar Primary School"
$ source <chr> "Bing; survey"

$ geometry <POLYGON [°]> POLYGON ((114.9125 4.892252...

02

Let’s plot it!

warning: false
ggplot(filter (kpg_sf, mukim == "Mukim Gadong B")) +
geom_sf() +
geom_label_repel(
aes(label = kampong, geometry = geometry),
stat = "sf_coordinates",
inherit.aes = FALSE,
box.padding =

size = 3,
max.overlaps = Inf
)

geom_sf (data = gq$osm_polygons, fill = "red3")

Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
give correct results for longitude/latitude data

/[
Kg. Men@an

4.92°N - [Kg. Pangkalan Gadong

[STKRJ Mata—Mata Kawasan 2
4.91°N - Kg. Mata—Mata
~—

4 90°N - STKRJ Mata—Mata Kawasan 3

\\\\:\ézﬁiimI%mnmmmMM&Mmﬂ
4.89°N - \

STKRJ Mata—-Mata Kawasan 1] Kg. Kiarong

4.88°N -

1 1 1 1 1 1 1
114.87°E114.88°E114.89°E114.90°E114.91°E114.92°E114.93°E
X

We can query based on amenity type as well. For example, to get all the schools in Brunei:
Bounding box for Brunei Muara

bm_sf <- filter(kpg_sf, district == "Brunei Muara")
bm_bbox <- st_bbox(bm_sf)

53

q <=
opq (bm_bbox) |>
add_osm_feature(

key = "amenity",
value = "school"
) >
osmdata_sf ()
print(q)

Object of class 'osmdata'

$bbox :
$overpass_call
$meta :
$osm_points :
$osm_lines :
$osm_polygons :
$osm_multilines :
$osm_multipolygons

with:
4.72903834429411,114.771346735899,5.04587807206061,115.138720231749

: The call submitted to the overpass API

metadata including timestamp and version numbers
'sf' Simple Features Collection with 1321 points
NULL

'sf' Simple Features Collection with 153 polygons
NULL

'sf' Simple Features Collection with 1 multipolygons

Almost always it is a good idea to look at the polygons, instead of the points. In any case,
you can always find the centroid of the polygons if you wanted to plot point data.

schools_sf <-
g$osm_polygons |>

as_tibble() |> # these two lines convert to tibble-like object

st_as_sf() |[|>

select(osm_id, name) |>

drop_na() |[>

st_centroid() # obtains X,Y coordinates of centroids

print(schools_sf)

Simple feature collection with 138 features and 2 fields

Geometry type: POINT
Dimension: XY

Bounding box: xmin: 114.7891 ymin: 4.730341 xmax: 115.1303 ymax: 5.036068

Geodetic CRS: WGS 84
A tibble: 138 x 3
osm_id name
* <chr> <chr>

geometry
<POINT [°]>

o4

1 45517438 Sekolah Rendah Haji Tarif (114.9321 4.88012)
2 45768022 Sekolah Menengah Awang Semaun (114.9389 4.876925)
3 45820441 Sekolah Rendah Pengiran Anak Puteri Besar (114.9397 4.874045)
4 45820563 Pehin Dato Jamil Primary School (114.9473 4.873318)
5 157197463 Sekolah Ugama Pengiran Muda Abdul Malik ~ (114.8709 4.848966)
6 157489516 Sekolah Rendah Dato Marsal (114.9576 4.961157)
7 167974917 Chung Hwa Middle School (114.9445 4.894822)
8 167974963 Sekolah Rendah Pusar Ulak (114.9358 4.896647)
9 167974968 St. Andrew’s School (114.9372 4.896313)
10 260696860 Jerudong International School (114.8793 4.969056)

i 128 more rows

ggplot () +
geom_sf (data

bm_sf, aes(fill = mukim), alpha = 0.3) +

geom_sf (data = schools_sf, size = 2)

Mukim Burong Pingai Ayer
Mukim Gadong A

Mukim Gadong B

Mukim Kianggeh

Mukim Kilanas

Mukim Kota Batu

Mukim Lumapas

Mukim Mentiri

Mukim Pangkalan Batu
Mukim Peramu

Mukim Saba

Mukim Sengkurong

114.80PE4. 85°FA. O0PEA. O5PES 0P ES. 05PES, 1 0PES. 15° Mukim Serasa

Mukim Sungai Kebun

Mukim Sunaai Kedavan

From here...

o Visit the OSM Wiki to see what other amenities you can query.

e Clearly not limited to schools — clinics, shops, movie theatres, ...

e Combine with the road data from {osrm} to calculate distances between schools and
hospitals, for example.

95

https://wiki.openstreetmap.org/wiki/Key:amenity?uselang=en-GB

References

o6

3 Quantitative analysis of textual data

« https://tutorials.quanteda.io/introduction/

3.1 Introduction

There are several R packages used for quantitative text analysis, but we will focus specifically
on the {quanteda} package. So, first install the package from CRAN:

install.packages("quanteda")

Since the release of {quanteda} version 3.0, textstat_*, textmodel_x and textplot_x* func-
tions are available in separate packages. We will use several of these functions in the chapters
below and strongly recommend installing these packages.

install.packages("quanteda.textmodels")

install.packages("quanteda.textstats")
install.packages("quanteda.textplots")

We will use the {readtext} package to read in different types of text data in these tutorials.

install.packages("readtext")

3.2 Quantitative data

Before beginning we need to load the libraries

library(tidyverse)
library(quanteda)
library(quanteda.textmodels)
library(quanteda.textstats)
library(quanteda.textplots)
library(readtext)

o7

And these ones lates for the modelling section:

library(seededlda)
library (LSX)

library(lubridate)
library(ggdendro)

3.2.1 Pre-formatted files

If your text data is stored in a pre-formatted file where one column contains the text and
additional columns might store document-level variables (e.g. year, author, or language), you
can import this into R using read_csv ().

path_data <- system.file("extdata/", package = "readtext")
dat_inaug <- read_csv(pasteO(path_data, "/csv/inaugCorpus.csv"))

Rows: 5 Columns: 4

-- Column specification ----———--—-----—""-—————————
Delimiter: ","

chr (3): texts, President, FirstName

dbl (1): Year

i Use “spec()” to retrieve the full column specification for this data.
i Specify the column types or set “show_col_types = FALSE™ to quiet this message.

glimpse(dat_inaug)

Rows: 5

Columns: 4

$ texts <chr> "Fellow-Citizens of the Senate and of the House of Represent~
$ Year <dbl> 1789, 1793, 1797, 1801, 1805

$ President <chr> "Washington", "Washington", "Adams", "Jefferson", "Jefferson"
$ FirstName <chr> "George", "George", "John", "Thomas", "Thomas"

The data set is about the inaugural speeches of the US presidents. So as we can see the data
set is arranged in tabular form, with 5 rows and 4 columns. The columns are texts, Year,
President, and FirstName.

Alternatively, you can use the {readtext} package to import character (comma- or tab-
separated) values. {readtext} reads files containing text, along with any associated document-
level variables. As an example, consider the following tsv file:

o8

tsv_file <- pasteO(path_data, "/tsv/dailsample.tsv")
cat(readLines(tsv_file, n = 4), sep = "\n") # first 3 lines

speechID memberID partyID constID title date member_name party_name const_name
1 977 22 158 1. CEANN COMHAIRLE I gCOIR AN LAE. 1919-01-21 Count George Noble, Count PI
2 1603 22 103 1. CEANN COMHAIRLE I gCOIR AN LAE. 1919-01-21 Mr. Padraic 0 Maille :
3 116 22 178 1. CEANN COMHAIRLE I gCOIR AN LAE. 1919-01-21 Mr. Cathal Brugha Sinn Féi

The document itself in raw format is arranged in tabular form, separated by tabs. Each row
contains a “document” (in this case, a speech) and the columns contain document-level
variables. The column that contains the actual speech is named speech. To import this using
{readtext}, you can use the following code:

dat_dail <- readtext(tsv_file, text_field = "speech")
glimpse(dat_dail)

Rows: 33

Columns: 11

$ doc_id <chr> "dailsample.tsv.1", "dailsample.tsv.2", "dailsample.tsv.3"~
$ text <chr> "Molaimse don D&il Cathal Brugha, an Teachta 6 Dhéisibh Ph~
$ speechID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,~
$ memberID <int> 977, 1603, 116, 116, 116, 116, 496, 116, 116, 2095, 116, 1~
$ partyID <int> 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22~
$ constID <int> 158, 103, 178, 178, 178, 178, 46, 178, 178, 139, 178, 178,~
$ title <chr> "1. CEANN COMHAIRLE I gCOIR AN LAE.", "1. CEANN COMHAIRLE ~
$ date <chr> "1919-01-21", "1919-01-21", "1919-01-21", "1919-01-21", "1~
$ member_name <chr> "Count George Noble, Count Plunkett", "Mr. Padraic 0 Maill~
$ party_name <chr> "Sinn Féin", "Sinn Féin", "Sinn Féin", "Sinn Féin", "Sinn ~
$ const_name <chr> "Roscommon North", "Galway Connemara", "Waterford County",~

3.2.2 Multiple text files

A second option to import data is to load multiple text files at once that are stored in the same
folder or subfolders. Again, path_data is the location of sample files on your computer. Unlike
the pre-formatted files, individual text files usually do not contain document-level variables.
However, you can create document-level variables using the {readtext} package.

The directory /txt/UDHR contains text files (“txt”) of the Universal Declaration of Human
Rights in 13 languages.

99

path_udhr <- pasteO(path_data, "/txt/UDHR")
list.files(path_udhr) # list the files in this folder

[1] "UDHR_chinese.txt" "UDHR_czech.txt" "UDHR_danish.txt"
(4] "UDHR_english.txt" "UDHR_french.txt" "UDHR_georgian.txt"
[7] "UDHR_greek.txt" "UDHR_hungarian.txt" "UDHR_icelandic.txt"
[10] "UDHR_irish.txt" "UDHR_japanese.txt" "UDHR_russian.txt"

[13] "UDHR_vietnamese.txt"

Each one of these txt files contains the text of the UDHR in the specific language. For instance
to inspect what each one of these files contain, we do the following;:

just first 5 lines
cat(readlLines(file.path(path_udhr, "UDHR_chinese.txt"), n = 5), sep = "\n")

217A(III) 1948 12 10

To import these files, you can use the following code:

dat_udhr <- readtext(path_udhr)
glimpse(dat_udhr)

Rows: 13

Columns: 2

$ doc_id <chr> "UDHR_chinese.txt", "UDHR_czech.txt", "UDHR_danish.txt", "UDHR_~
$ text <chr> " \n 217A(III) ~

1 Note

If you are using Windows, you need might need to specify the encoding of the file
by adding encoding = "utf-8". In this case, imported texts might appear like
<U+4E16><U+754C><U+4EBA><U+6743> but they indicate that Unicode charactes are im-
ported correctly.

Here’s another example of multiple text files. The directory /txt/EU_manifestos contains
text files (“.txt”) of the European Union manifestos in different languages.

60

path_eu <- pasteO(path_data, "/txt/EU_manifestos/")

list.

[1]
(3]
(5]
(7]
(9]
[11]
[13]
[15]
[17]

files(path_eu)

"EU_euro_2004_de_PSE.txt"
"EU_euro_2004_en_PSE.txt"
"EU_euro_2004_es_PSE.txt"
"EU_euro_2004_fi V.txt"
"EU_euro_2004_fr_V.txt"
"EU_euro_2004_hu_V.txt"
"EU_euro_2004_1v_V.txt"
"EU_euro_2004_pl_V.txt"
"EU_euro_2004_si_V.txt"

list the files in this folder

"EU_euro_2004_de_V.txt"
"EU_euro_2004_en_V.txt"
"EU_euro_2004_es_V.txt"
"EU_euro_2004_fr_ PSE.txt"
"EU_euro_2004_gr_V.txt"
"EU_euro_2004_it_PSE.txt"
"EU_euro_2004_nl_V.txt"
"EU_euro_2004_se_V.txt"

You can generate document-level variables based on the file names using the docvarnames and
docvarsfrom argument. dvsep = "_" specifies the value separator in the filenames. encoding
= "IS0-8859-1" determines character encodings of the texts. Notice how the document vari-
ables are nicely generated from the file names.

dat_eu <- readtext(
file = path_eu,

docvarsfrom = "filenames",
docvarnames = c("unit", "context", "year", "language", "party"),
dvsep = "_",

encoding = "IS0-8859-1"

)

glimpse(dat_eu)

Rows:

17

Columns: 7

$ doc_id <chr> "EU euro_ 2004 de PSE.txt",

$ text <chr> "PES - PSE -

$ unit <Chr> IIEUII s |IEUI| s HEU!I s IIEUH s llEUH s |IEUII s ||EUII s

$ context <chr> "euro", "euro", "euro", "euro", "euro",

$ year <int> 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004,
$ language <ChI‘> IIdell , Ildell , llenll , llenll s Ilesll s “eS" , Ilfill ,

$ party <ChI’> IIPSEII s IIVII s IIPSEH s IIVII s IIPSEH s IlVII s IIVll s

3.2.3 JSON

"EU_euro_2004_de_V.txt",
SPE European Parliament rue Wiertz B 1047 Brusse~

llEUIl s

"euro" R

"EU_euro_~

IIEU" R n_.

"euro~

2004, 2004, 2~
nfpn s llgrn s "

IIV"
3

IlVII s

nyn .

You can also read JSON files (.json) downloaded from the Twititer stream API. twitter.json
is located in data directory of this tutorial package.

61

https://raw.githubusercontent.com/quanteda/tutorials.quanteda.io/master/content/data/twitter.json

The JSON file looks something like this

{"created_at":"Wed Jun 07 23:30:01 +0000 2017","id":872596537142116352,"id_str":"87259653714
"source":"\u0O3ca href=\"http:\/\/twitter.com\/download\/iphone\" rel=\"nofollow\"\u003eTwit
"in_reply_to_status_id_str":"872596176834572288","in_reply_to_user_id":4556760676,"in_reply_:
"verified":false,"followers_count":367,"friends_count":304,"listed_count":1,"favourites_coun
"profile_link_color":"1DA1F2","profile_sidebar_border_color":"CODEED","profile_sidebar_fill_
"profile_image_url_https":"https:\/\/pbs.twimg.com\/profile_images\/870447188400365568\/RiR1!
"place":null,"contributors":null,"is_quote_status":false,"retweet_count":0,"favorite_count" :!

It’s a little hard to parse, but luckily we just leave it to the {readtext} package to do the job
for us.

dat_twitter <- readtext("../data/twitter.json", source = "twitter")

The file comes with several metadata for each tweet, such as the number of retweets and likes,
the username, time and time zone.

head(names(dat_twitter))

[1] "doc_id" "text" "retweet_count" "favorite_count"
[5] "favorited" "truncated"
3.2.4 PDF

readtext () can also convert and read PDF (“pdf”) files. The directory /pdf/UDHR contains
PDF files of the Universal Declaration of Human Rights in 13 languages. Each file looks like
this:

62

eoe 0~ UDHR_czech.pdf @ Q @ E] £ ~ ET @

Page 10of 2

VSEOBECNA DEKLARACE LIDSKYCH PRAV
Uvod

U védomi toho,

Ze uznani pfirozené distojnosti a rovnych a nezcizitelnych prav clent lidské
rodiny je zakladem svobody, spravedinosti a miru ve svété,

Ze zneuznani lidskych prav a pohrdani jimi vedlo k barbarskym cindm, urazejicim
svédomi lidstva, a Zze vybudovani svéta, ve kterém lidé, zbaveni strachu a nouze,
se budou tésiti svobodé projevu a pfesvédceni, bylo prohlaSeno za nejvy3si cil
lidu,

Ze je nutné, aby lidska prava byla chranena zakonem, nema-li byt clovék
donucen uchylovat se, kdyZ ve ostatni selhalo, k odbaoji proti tyranii a utlaku,

Ze je nutné podporovat rozvoj pratelskych vztahu mezi narody,

Ze lid Spojenych narodud zddraznil v Charté znovu svou viru v zakladni lidska
prava, v dustojnost a hodnotu lidské osobnosti, v rovna prava muzi i Zen a Ze se
rozhodl podporovat socialni pokrok a vytvofit lepsi Zivotni podminky ve vétsi
svobodé,

Ze Clenske staty prevzaly zavazek zajistit ve spolupraci s Organizaci spojenych
narodll vSeobecné uznavani a zachovavani lidskych prav a zakladnich svobod a
Ze stejné chapani téchto prav a svobod ma nesmirny vyznam pro dokonalé
splnéni tohoto zavazku,

Valné shromé&zd&ni

vyhlasuje tuto

dat_udhr <- readtext(
pasteO(path_data, "/pdf/UDHR/*.pdf"),

docvarsfrom = "filenames",
docvarnames = c("document", "language"),
sep = non

)
print(dat_udhr)

readtext object consisting of 11 documents and 2 docvars.
A data frame: 11 x 4
doc_id text document language

63

<chr>

H OO W N

UDHR_chinese.pdf "\"
UDHR_czech.pdf
UDHR_danish.pdf

UDHR_french.pdf
UDHR_greek.pdf
i 5 more rows

<chr>

\n\n \"..

3.2.5 Microsoft Word

." UDHR
"\"VSEOBECNA \"...
"\"Den 10. de\"...
UDHR_english.pdf "\"Universal \"...
"\"Déclaratio\"...
"\"OIKOTMENIK\". ..

<chr>
chinese
UDHR
UDHR
UDHR
UDHR
UDHR

<chr>

czech
danish
english
french
greek

Finally, readtext () can import Microsoft Word (“.doc” and “.docx”) files.

dat_word <- readtext(pasteO(path_data, "/word/*.docx"))
print (dat_udhr)

readtext object consisting of 11 documents and 2 docvars.
A data frame:

doc_id
<chr>

H OO WN -

3.3 Workflow

UDHR_chinese.pdf "\"
UDHR_czech.pdf
UDHR_danish.pdf

UDHR_french.pdf
UDHR_greek.pdf
i 5 more rows

11 x 4
text
<chr>

\n\n \"..

." UDHR
"\"VSEOBECNA \"...
"\"Den 10. de\"...
UDHR_english.pdf "\"Universal \"...
"\"Déclaratio\"...
"\"OIKOTMENIK\". ..

{quanteda} has three basic types of objects:

1. Corpus

document language

<chr>
chinese
UDHR
UDHR
UDHR
UDHR
UDHR

e Saves character strings and variables in a data frame
e Combines texts with document-level variables

2. Tokens

e Stores tokens in a list of vectors
o More efficient than character strings, but preserves positions of words

64

<chr>

czech
danish
english
french
greek

o Positional (string-of-words) analysis is performed using textstat_collocations(),
tokens_ngrams () and tokens_select() or fcm() with window option

3. Document-feature matrix (DFM)

¢ Represents frequencies of features in documents in a matrix

e The most efficient structure, but it does not have information on positions of words

» Non-positional (bag-of-words) analysis are profrmed using many of the textstat_x
and textmodel * functions

Text analysis with {quanteda} goes through all those three types of objects either explicitly
or implicitly.

Text files Document-level variables
Corpus
Tokens
\ 4
Positional analysis (string-of-words) DFM
v

Non-positional analysis (bag-of-words)

For example, if character vectors are given to dfm(), it internally constructs corpus and tokens
objects before creating a DFM.

3.3.1 Corpus

You can create a corpus from various available sources:

1. A character vector consisting of one document per element

65

2. A data frame consisting of a character vector for documents, and additional vectors for
document-level variables

3.3.1.1 Character vector

data_char_ukimmig2010 is a named character vector and consists of sections of British election
manifestos on immigration and asylum.

str(data_char_ukimmig2010)

Named chr [1:9] "IMMIGRATION: AN UNPARALLELED CRISIS WHICH ONLY THE BNP CAN SOLVE. \n\n- At
- attr(*, "names")= chr [1:9] "BNP" "Coalition" "Conservative" "Greens"

corp_immig <- corpus(
data_char_ukimmig2010,
docvars = data.frame(party = names(data_char_ukimmig2010))

)

print(corp_immig)

Corpus consisting of 9 documents and 1 docvar.
BNP :
"IMMIGRATION: AN UNPARALLELED CRISIS WHICH ONLY THE BNP CAN S..."

Coalition :
"IMMIGRATION. The Government believes that immigration has e..."

Conservative
"Attract the brightest and best to our country. Immigration h..."

Greens
"Immigration. Migration is a fact of life. People have alway..."

Labour :
"Crime and immigration The challenge for Britain We will comnt..."

LibDem :
"firm but fair immigration system Britain has always been an ..."

[reached max_ndoc ... 3 more documents]

66

summary (corp_immig)

Corpus consisting of 9 documents, showing 9 documents:

Text Types Tokens Sentences party

BNP 1125 3280 88 BNP
Coalition 142 260 4 Coalition
Conservative 251 499 15 Conservative
Greens 322 679 21 Greens
Labour 298 683 29 Labour
LibDem 251 483 14 LibDem

PC 7 114 5 PC

SNP 88 134 4 SNP

UKIP 346 723 26 UKIP

3.3.1.2 Data frame

Using read_csv(), load an example file from path_data as a data frame called dat_inaug.
Note that your file does not need to be formatted as .csv. You can build a {quanteda} corpus
from any file format that R can import as a data frame (see, for instance, the rio package for
importing various files as data frames into R).

set path
path_data <- system.file("extdata/", package = "readtext")

import csv file

dat_inaug <- read.csv(pasteO(path_data, "/csv/inaugCorpus.csv"))
names (dat_inaug)

[1] "texts" "Year" "President" "FirstName"

Construct a corpus from the “texts” column in dat_inaug.

corp_inaug <- corpus(dat_inaug, text_field = "texts")
print (corp_inaug)

Corpus consisting of 5 documents and 3 docvars.
textl
"Fellow-Citizens of the Senate and of the House of Representa..."

67

https://cran.r-project.org/web/packages/rio/index.html

text2 :
"Fellow citizens, I am again called upon by the voice of my c..."

text3 :
"When it was first perceived, in early times, that no middle ..."

textd :
"Friends and Fellow Citizens: Called upon to undertake the du..."

textb :
"Proceeding, fellow citizens, to that qualification which the..."

3.3.1.3 Document-level variables

{quanteda}’s objects keep information associated with documents. They are called “document-
level variables”, or “docvars”, and are accessed using docvars().

corp <- data_corpus_inaugural
head (docvars(corp))

Year President FirstName Party
1 1789 Washington George none
2 1793 Washington George none
3 1797 Adams John Federalist
4 1801 Jefferson Thomas Democratic-Republican
5 1805 Jefferson Thomas Democratic-Republican
6 1809 Madison James Democratic-Republican

If you want to extract individual elements of document variables, you can specify field. Or
you could just subset it as you normally would a data.frame.

docvars(corp, field = "Year")

[1] 1789 1793 1797 1801 1805 1809 1813 1817 1821 1825 1829 1833 1837 1841 1845
[16] 1849 1853 1857 1861 1865 1869 1873 1877 1881 1885 1889 1893 1897 1901 1905
[31] 1909 1913 1917 1921 1925 1929 1933 1937 1941 1945 1949 1953 1957 1961 1965
[46] 1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 2013 2017 2021

68

corp$Year

[1] 1789 1793 1797 1801 1805 1809 1813 1817 1821 1825 1829 1833 1837 1841 1845
[16] 1849 1853 1857 1861 1865 1869 1873 1877 1881 1885 1889 1893 1897 1901 1905
[31] 1909 1913 1917 1921 1925 1929 1933 1937 1941 1945 1949 1953 1957 1961 1965
[46] 1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 2013 2017 2021

So that means assignments to change document-level variables will work as usual in R. For
example, you can change the Year variable to a factor (if you wished). And since the output of
a docvars () function is a data.frame, you could subset or filter as you would a data.frame.

docvars(corp) |>
filter(Year >= 1990)

Year President FirstName Party
1 1993 Clinton Bill Democratic
2 1997 Clinton Bill Democratic
3 2001 Bush George W. Republican
4 2005 Bush George W. Republican
5 2009 Obama Barack Democratic
6 2013 Obama Barack Democratic
7 2017 Trump Donald J. Republican
8 2021 Biden Joseph R. Democratic
{quanteda} also provides corpus_subset() function, but since we learnt about
dplyr, we can use it here.

Another useful feature is the ability to change the unit of texts. For example, the UK Immi-
gration 2010 data set is a corpus of 9 documents, where each document is a speech by the
political party.

corp <- corpus(data_char_ukimmig2010)
print (corp)

Corpus consisting of 9 documents.
BNP :
"IMMIGRATION: AN UNPARALLELED CRISIS WHICH ONLY THE BNP CAN S..."

Coalition :

69

"IMMIGRATION. The Government believes that immigration has e..."

Conservative
"Attract the brightest and best to our country. Immigration h..."

Greens
"Immigration. Migration is a fact of life. People have alway..."

Labour :
"Crime and immigration The challenge for Britain We will cont...

LibDem :

"firm but fair immigration system Britain has always been an ..."

[reached max_ndoc ... 3 more documents]

We can use corpus_reshape() to change the unit of texts. For example, we
unit of texts to sentences using the command below.

corp_sent <- corpus_reshape(corp, to = "sentences")
print (corp_sent)

Corpus consisting of 206 documents.
BNP.1
"IMMIGRATION: AN UNPARALLELED CRISIS WHICH ONLY THE BNP CAN S..."

BNP.2 :
"The Scale of the Crisis Britain's existence is in grave per...

BNP.3 :

"In the absence of urgent action, we, the indigenous British ..."

BNP.4 :

"We, alone of all the political parties, have a decades-long ..."

BNP.5 :
"British People Set to be a Minority within 30 - 50 Years: Th..."

BNP.6 :
"Figures released by the ONS in January 2009 revealed that th..."

[reached max ndoc ... 200 more documents]

70

can change the

The following code restores it back to the document level.

corp_doc <- corpus_reshape(corp_sent, to = "documents")
print (corp_doc)

Corpus consisting of 9 documents.
BNP :
"IMMIGRATION: AN UNPARALLELED CRISIS WHICH ONLY THE BNP CAN S..."

Coalition :
"IMMIGRATION. The Government believes that immigration has e..."

Conservative
"Attract the brightest and best to our country. Immigration ..."

Greens
"Immigration. Migration is a fact of life. People have alwa..."

Labour :
"Crime and immigration The challenge for Britain We will co..."

LibDem :
"firm but fair immigration system Britain has always been an..."

[reached max_ndoc ... 3 more documents]

3.3.2 Tokens

tokens () segments texts in a corpus into tokens (words or sentences) by word boundaries. By
default, tokens() only removes separators (typically white spaces), but you can also remove
punctuation and numbers.

toks <- tokens(corp_immig)
print (toks)

Tokens consisting of 9 documents and 1 docvar.

BNP :
[1] "IMMIGRATION" ":" "AN" "UNPARALLELED" "CRISIS"
[6] "WHICH" "ONLY" "THE" "BNP" "CAN"
[11] "SOLVE" "on
[... and 3,268 more]

71

Coalition :

(1] "IMMIGRATION" "." "The" "Government"
(6] "that" "immigration" "has" "enriched"
[11] "culture" "and"
[... and 248 more]
Conservative
(1] "Attract" "the" "brightest" "and"
(6] "to" "our" "country" mon
[11] "has" "enriched"
[... and 487 more]
Greens
[1] "Immigration" "." "Migration" "is"
(6] "fact" "of" "life" "o
[11] "have" "always"
[... and 667 more]
Labour :
[1] "Crime" "and" "immigration" "The"
(6] "for" "Britain" "We" "will"
[11] "immigration" "with"
[... and 671 more]
LibDem :
(1] "firm" "but" "fair" "immigration"
[6] "Britain" "has" "always" "been"
[11] "open" ",
[... and 471 more]

[reached max ndoc ... 3 more documents]

toks_nopunct <- tokens(data_char_ukimmig2010, remove_punct
print (toks_nopunct)

Tokens consisting of 9 documents.

BNP :
[1] "IMMIGRATION" "AN" "UNPARALLELED" "CRISIS"
[6] "ONLY" "THE" "BNP" "CAN"
[11] "At" "current"
[... and 2,839 more]

72

"believes"
n Ourll

IIbeSt n
"Immigration"

IIall
"People"

"challenge"
"control"

"system"
n anll

TRUE)

"WHICH"
"SOLVE"

Coalition :

(1] "IMMIGRATION" "The" "Government" "believes" "that"
[6] "immigration" "has" "enriched" "our" "culture"
[11] "and" "strengthened"
[... and 219 more]
Conservative
(1] "Attract" "the" "brightest" "and" "best"
(6] "to" "our" "country" "Immigration" "has"
[11] "enriched" "our"
[... and 440 more]
Greens
[1] "Immigration" "Migration" "is" "a" "fact"
(6] "of" "life" "People" "have" "always"
[11] "moved" "from"
[... and 598 more]
Labour :
[1] "Crime" "and" "immigration" "The" "challenge"
(6] "for" "Britain" "We" "will" "control"
[11] "immigration" "with"
[... and 608 more]
LibDem :
(1] "firm" "but" "fair" "immigration" "system"
[6] "Britain" "has" "always" "been" "an"
[11] "open" "welcoming"
[... and 423 more]
[reached max ndoc ... 3 more documents]

You can see how keywords are used in the actual contexts in a concordance view produced by
kwic().

kw <- kwic(toks, pattern = "immigx")
head (kw, 10)

Keyword-in-context with 10 matches.
[BNP, 1] | IMMIGRATION |
[BNP, 16] SOLVE. - At current | immigration |

73

[BNP, 78] a halt to all further | immigration |
[BNP, 85] the deportation of all illegal | immigrants |
[BNP, 169] Britain, regardless of their | immigration |
[BNP, 197] admission that they orchestrated mass | immigration |
[BNP, 272] grave peril, threatened by | immigration |
[BNP, 374]), legal Third World | immigrants |
[BNP, 531] to second and third generation | immigrant |
[BNP, 661] are added in, the | immigrant |

: AN UNPARALLELED CRISIS WHICH

and birth rates, indigenous

, the deportation of all

, a halt to the

status. - The BNP

to change forcibly Britain's demographics
and multiculturalism. In the

made up 14.7 percent (

mothers. Figures released by

birth rate is estimated to

1 Note

1. If you want to find multi-word expressions, separate words by white space and wrap
the character vector by phrase(), as follows:

kw_asylum <- kwic(toks, pattern = phrase("asylum seekerx*"))

2. Texts do not always appear nicely in your R console, so you can use View() to see
the keywords-in-context in an interactive HT'ML table.

You can remove tokens that you are not interested in using tokens_select (). Usually we
remove function words (grammatical words) that have little or no substantive meaning in
pre-processing. stopwords () returns a pre-defined list of function words.

toks_nostop <- tokens_select(

toks,
pattern = stopwords("en"),
selection = "remove" # keep or remove

)
print (toks_nostop)

Tokens consisting of 9 documents and 1 docvar.

74

BNP :
(1] "IMMIGRATION" ":"

"UNPARALLELED" "CRISIS"
(6] "CAN" "SOLVE" e -
[11] "immigration" "birth"
[... and 2,109 more 1]
Coalition :
(1] "IMMIGRATION" "." "Government" "believes"
[6] "enriched" "culture" "strengthened" "economy"
[11] "must" "controlled"
[... and 146 more]
Conservative
[1] "Attract" "brightest" "best" "country"
[6] "Immigration" "enriched" "nation" "years"
[11] "attract" "brightest"
[... and 277 more]
Greens
(1] "Immigration" "." "Migration" "fact"
(6] "." "People" "always" "moved"
[11] "country" "another"
[... and 377 more]
Labour :
[1] "Crime" "immigration" "challenge"
[5] "control" "immigration" "new"
[9] "points-based" "system" -
[... and 391 more]
LibDem :
(1] "firm" "fair" "immigration" "system"
(6] "always" "open" " "welcoming"
[11] ", "thousands"
[... and 285 more]

[reached max_ndoc . 3 more documents]

75

IIBNPII
"current"

"immigration"

n n
3

"life"
n one n

"Britain"
"Australian-style"
"unlike"

"Britain"
"country"

i Note

The stopwords () function returns character vectors of stopwords for different languages,
using the ISO-639-1 language codes. For Malay, use stopwords("ms", source =
"stopwords-iso"). For Bruneian specific context, you may need to amend the stop-
words yourselves.

You can generate n-grams in any lengths from a tokens using tokens_ngrams (). N-grams are
a contiguous sequence of n tokens from already tokenized text objects. So for example, in the
phrase “natural language processing”:

YW

o Unigram (1-gram): “natural”, “language”, “processing”
o Bigram (2-gram): “natural language”, “language processing”
o Trigram (3-gram): “natural language processing”

tokens_ngrams() also supports skip to generate skip-grams.

toks_ngram <- tokens_ngrams(toks_nopunct, n = 3, skip = 0)
head(toks_ngram[[1]], 20) # the first political party's trigrams

[1] "IMMIGRATION_AN_UNPARALLELED" "AN_UNPARALLELED_CRISIS"

[3] "UNPARALLELED CRISIS_WHICH" "CRISIS_WHICH_ ONLY"

[5] "WHICH_ONLY_ THE" "ONLY_THE_BNP"

[7] "THE_BNP_CAN" "BNP_CAN_ SOLVE"

[9] "CAN_SOLVE_At" "SOLVE_At_current"

[11] "At_current_immigration" "current_immigration_and"
[13] "immigration_and_birth" "and_birth_rates"

[15] "birth_rates_indigenous" "rates_indigenous_British"
[17] "indigenous_British_people" "British_people_are"

[19] "people_are_set" "are_set_to"

3.3.3 Document feature matrix
dfm() constructs a document-feature matrix (DFM) from a tokens object.
toks_inaug <- tokens(data_corpus_inaugural, remove_punct = TRUE)

dfmat_inaug <- dfm(toks_inaug)
print (dfmat_inaug)

Document-feature matrix of: 59 documents, 9,419 features (91.89) sparse) and 4 docvars.
features
docs fellow-citizens of the senate and house representatives

76

1789-Washington 1 71 116
1793-Washington 0 11 13
1797-Adams 3 140 163
1801-Jefferson 2 104 130
1805-Jefferson 0 101 143
1809-Madison 1 69 104
features

docs among vicissitudes incident
1789-Washington 1 1 1
1793-Washington 0 0 0
1797-Adams 4 0 0
1801-Jefferson 1 0 0
1805-Jefferson 7 0 0
1809-Madison 0 0 0

[reached max_ndoc ...

Some useful functions to operate on DFMs are:

BNl

ndoc(): returns the number of documents
nfeat(): returns the number of features
docnames (): returns the document names
featnames(): returns the feature (column) names
topfeatures(): returns the most frequent features
docvars(): returns the document-level variables

SO O O - O

48

130
81
93
43

O O O O oOoN

53 more documents, reached max_nfeat ...

O O O N ON

9,409 more features]

DFMs sometimes behaves like normal matrices too, so you can use rowSums () and colSums ()

to calculate marginals.

Most commonly perhaps, is you want to select some columns (i.e. features) from the DFM
that satisfy a pattern. For instance,

dfm_select(dfmat_inaug, pattern = "freedom")

Document-feature matrix of: 59 documents, 1 feature (38.98% sparse) and 4 docvars.

features

docs freedom
1789-Washington 0
1793-Washington 0
1797-Adams 0
1801-Jefferson 4
1805-Jefferson 2
1809-Madison 1

[reached max ndoc ... 53

more documents]

7

dfm_keep(dfmat_inaug, min_nchar = 5)

Document-feature matrix of: 59 documents, 8,560 features (93.04), sparse) and 4 docvars.

features
docs fellow-citizens senate house representatives among
1789-Washington 1 1 2 2 1
1793-Washington 0 0 0 0 0
1797-Adams 3 1 0 2 4
1801-Jefferson 2 0] 0 0] 1
1805-Jefferson 0 0 0 0 7
1809-Madison 1 0 0 0 0
features
docs vicissitudes incident event could filled
1789-Washington 1 1 2 3 1
1793-Washington 0 0 0 0 0
1797-Adams 0 0 0 1 0
1801-Jefferson 0 0 0 0 0
1805-Jefferson 0 0 0 2 0
1809-Madison 0 0 0 1 1
[reached max_ndoc ... 53 more documents, reached max_nfeat ... 8,550 more features]

There is also dfm_trim() to remove features that are too frequent or too rare, based on
frequencies.

Trim DFM containing features that occur less than 10 times in the corpus
dfm_trim(dfmat_inaug, min_termfreq = 10)

Document-feature matrix of: 59 documents, 1,524 features (68.93) sparse) and 4 docvars.

features
docs fellow-citizens of the senate and house representatives
1789-Washington 1 71 116 1 48 2 2
1793-Washington 0 11 13 0o 2 0 0
1797-Adams 3 140 163 1 130 0 2
1801-Jefferson 2 104 130 0 81 0 0
1805-Jefferson 0 101 143 0 93 0 0
1809-Madison 1 69 104 0 43 0 0
features
docs among to life
1789-Washington 1 48 1
1793-Washington 0 b5 0
1797-Adams 4 72 2

78

1801-Jefferson 1 61 1

1805-Jefferson 7 83 2
1809-Madison 0 61 1
[reached max_ndoc ... 53 more documents, reached max_nfeat ... 1,514 more features]

Trim DFM containing features that occur in more than 10% of the documents
dfm_trim(dfmat_inaug, max_docfreq = 0.1, docfreq_type = "prop")

Document-feature matrix of: 59 documents, 7,388 features (96.87J, sparse) and 4 docvars.

features
docs vicissitudes filled anxieties notification transmitted 14th
1789-Washington 1 1 1 1 1 1
1793-Washington 0 0 0 0 0 0
1797-Adams 0 0 0 0 0 0
1801-Jefferson 0 0 0 0 0 0
1805-Jefferson 0 0 0 0 0 0
1809-Madison 0 1 0 0 0 0
features
docs month summoned veneration fondest
1789-Washington 1 1 1 1
1793-Washington 0 0 0 0
1797-Adams 0 0 2 0
1801-Jefferson 0 0 0 0
1805-Jefferson 0 0 0 0
1809-Madison 0 0 0 0
[reached max_ndoc ... 53 more documents, reached max_nfeat ... 7,378 more features]

3.4 Statistical analysis

Note: If you have not installed {quanteda.corpora}, do so by running

remotes::install_github("quanteda/quanteda.corpora")

3.4.1 Simple frequency analysis
Unlike topfeatures(), textstat_frequency() shows both term and document frequencies.

You can also use the function to find the most frequent features within groups. Using the
download () function from {quanteda.corporal}, you can retrieve a text corpus of tweets.

79

corp_tweets <- quanteda.corpora::download(url = "https://www.dropbox.com/s/846sknlibelbnd2/d

We can analyse the most frequent hashtags by applying tokens_keep(pattern = "#x*") before
creating a DFM.

toks_tweets <-
tokens(corp_tweets, remove_punct = TRUE) [>
tokens_keep(pattern = "#x*x")

dfmat_tweets <- dfm(toks_tweets)

tstat_freq <- textstat_frequency(dfmat_tweets, n = 5, groups = lang)
head(tstat_freq, 20)

feature frequency rank docfreq group
1 #twitter 1 1 1 Basque
2 #canviemeuropa 1 1 1 Basque
3 #prest 1 1 1 Basque
4 #psifizo 1 1 1 Basque
5 #ekloges2014gr 1 1 1 Basque
6 #ep2014 1 1 1 Bulgarian
7 #yourvoice 1 1 1 Bulgarian
8 #eudebate2014 1 1 1 Bulgarian
9 # 1 1 1 Bulgarian
10 #ep2014 1 1 1 Croatian
11 #savedonbaspeople 1 1 1 Croatian
12 #vitoriagasteiz 1 1 Croatian
13 #epl4dk 32 1 32 Danish
14 #dkpol 18 2 18 Danish
15 #eupol 7 3 7 Danish
16 #vindtilep 7 3 7 Danish
17 #patentdomstol 4 5 4 Danish
18 #ep2014 35 1 35 Dutch
19 #vvd 11 2 11 Dutch
20 #eu 9 3 7 Dutch

You can also plot the Twitter hashtag frequencies easily using ggplot ().

dfmat_tweets |>
textstat_frequency(n = 15) |[>
ggplot(aes(x = reorder(feature, frequency), y = frequency)) +
geom_point() +

80

coord_flip() +
labs(x = NULL, y = "Frequency") +
theme bw()

#ep2014 -
#salvini - o
#fdian - °
#ukip 1 °
#caraacaratve - (]
#alzalatesta -
#lega -
#telleurope -
#votameloni - °
#quota96scuola - °
#ee2014 -
#ovotoitaliano -
#tumueveseuropa -]
#votapp - °
#bastaeuro- @

T T T
100 200 300
Frequency

Alternatively, you can create a word cloud of the 100 most common hashtags.

set.seed(132)
textplot_wordcloud(dfmat_tweets, max_words = 100)

#votacariete #eplddk #iltestnonsitocca
#europanova

9
8

£

3

B #ciudadanosue

2 ipodemos |, #lEselliopeens
g

g #guanyemnoseuropa

S

£

ffroma
h evote

#tip #clandestinoéreato
#ottoemezzo
#ppsoe z dpd #nOWSChUIZ#pnmaveraeuropea
reantS8553 £ 3 Plropstvotap 1 omacarets
o O omss #in#quotad6scuola fdiRisgniat

#por(aaporta d.) #|ega #U k| p #debateuropeestv3

#epld #pod#erlrwsZSm
elv
#ca\leacalle#'OVOtonall nq #fd 58N, #bbeat
#noeum .
wineraiz FVOTAMeElONI lan.: o Yihoupaie
#pomldaltl % =
#deba(eeurnpe?eslve é 2 %%
#votegreen2014 o % g:;kpol
#bastaeuro 1O 0888
jdpda #svpol Sa VI n 8—§ 25 3 2 ivotegreen
o @
et " #caraacaratve € 5 o g 3%
#enoaueppsoe Hg|zalatesta 5 0 88s 2
euroyision < 2

I
yiefon FUMUEVESEUrODa B8 Gy
#votaitaliano #EUIOPEE. #fdg U’q:t a, Py
#eanviemeuropa gi(mueveseuropa g & #ps O piraten
#quintacolonna #16NEUTOpa. e S &
#votandopodemos #europacs grenzi §
weurupeenneszom Jsouz014

e

#eur

81

Finally, it is possible to compare different groups within one Wordcloud. We must first create
a dummy variable that indicates whether a tweet was posted in English or a different language.
Afterwards, we can compare the most frequent hashtags of English and non-English tweets.

create document-level variable indicating whether tweet was in English or

other language
corp_tweets$dummy_english <-
factor(ifelse(corp_tweets$lang == "English", "English", "Not English"))

tokenize texts
toks_tweets <- tokens(corp_tweets)

create a grouped dfm and compare groups
dfmat_corp_language <-
dfm(toks_tweets) |>
dfm_keep(pattern = "#x") |>
dfm_group(groups = dummy_english)

create wordcloud
set.seed(132) # set seed for reproducibility
textplot_wordcloud(dfmat_corp_language, comparison = TRUE, max_words = 200)

English

ee2014
ega

#ovotolega

g Hies
Feuropacs y25m P #europa ¥
anacariete #votapso

48 #votameloniu #S @ Vi N i#votapp#swol 4y
rimaveraeuropea H #clandestinoéreat
Pimaversevorea fifdiann #alzalatesta #ponid
#debate he? #caraacaratve s spastaeuro #votacaiiete

e o astve #quota96scuola #tumueveseuropa #ump
nloqueppsoe #iscelgogiorgia o Steliopedstld #eovaglit
roupyd 5 &

3 e
sepladk AITUSTA2 7

elpoderdelagente
olire “Heuropeenns

P
g #portaaporta _#o
#mbs
nes2014 “iziarg
lropa £
uropeens iaiia #idoneiconcorsone:
#sceltaeuropea #cland

s
)
S
g
n

nzacatiedra
Crioneseuropeas

Not English

82

3.4.2 Lexical diversity

Lexical diversity is a measure of how varied the vocabulary in a text or speech is. It indicates
the richness of language use by comparing the number of unique words (types) to the total
number of words (tokens) in the text. It is useful, for instance, for analysing speakers’ or
writers’ linguistic skills, or the complexity of ideas expressed in documents.

A common metric for lexical diversity is the Type-Token Ratio (TTR), calculated as:

N
TTR = 3PS
N

okens

toks_inaug <- tokens(data_corpus_inaugural)
dfmat_inaug <-
dfm(toks_inaug) |>
dfm_remove(pattern = stopwords("en")) # similar to dfm_select()

tstat_lexdiv <- textstat_lexdiv(dfmat_inaug)
tail (tstat_lexdiv, 5)

document TTR
55 2005-Bush 0.6176753
56 2009-Obama 0.6828645
57 2013-Obama 0.6605238
58 2017-Trump 0.6409537
59 2021-Biden 0.5572316

We can prepare a plot using ggplot () as follows:

plot_df <-
tstat_lexdiv |>
mutate(id = row_number())

ggplot(plot_df, aes(id, TTR)) +
geom_line() +
scale_x_continuous(
breaks = plot_df$id,
labels = plot_df$document,
name = NULL
)
scale_y_continuous(labels = scales::percent) +
theme bw() +
theme (axis.text.x = element_text(angle = 45, hjust = 1))

83

90% -
80% -
(. 70%-
|_
60% -
50% -
rrrorororToTaTd
SR)"' RIS
X ///, ’/..'; 9 e""'}ﬂ\‘;&yr‘"ﬁ%" \" "ﬁ,:"% \

v

N A\NK P
S

O
C;

%

/3 204 ".“'e'o'~'- XKL 7S R &.‘ AR DAY 22 Q8 kg,-
e R R S Sl
N ,\' & O N0 > "o‘a

NS N

3.4.3 Document/Feature similarity

Document /feature similarity is a measure of how alike two documents or sets of features are
based on their content. It quantifies the degree to which documents share similar terms, topics,
or characteristics.

textstat_dist () calculates similarities of documents or features for various measures. The
output is compatible with R’s dist (), so hierarchical clustering can be performed without any
transformation.

toks_inaug <- tokens(data_corpus_inaugural)
dfmat_inaug <-
dfm(toks_inaug) |>
dfm_remove(pattern = stopwords("en")) # similar to dfm_select()

Calculate document similarity
dist_mat <- textstat_dist(dfmat_inaug) # using Euclidean distance
dist_mat[1:3, 1:3]

3 x 3 Matrix of class "dspMatrix"

1789-Washington 1793-Washington 1797-Adams
1789-Washington 0.00000 76.13803 141.4072
1793-Washington 76.13803 0.00000 206.6954

84

1797-Adams 141.40721 206.69543 0.0000

To plot this using ggplot (), we rely on the {ggdendro} package.
clust <- hclust(as.dist(dist_mat)) # hierarchical clustering
library(ggdendro)

dendr <- dendro_data(clust)
ggdendrogram(dendr, rotate = TRUE)

85

2013-Obama
1965-Johnson
2017-Trump
2001-Bush
2005-Bush
1993-Clinton
2009-Obama
1969-Nixon
1997-Clinton
1957-Eisenhower
1953-Eisenhower
1949-Truman
1901-McKinley
1881-Garfield
1857-Buchanan
1977-Carter
1941-Roosevelt
1961-Kennedy
1913-Wilson
1973-Nixon
1937-Roosevelt
1933-Roosevelt
1917-Wilson
1893-Cleveland
1873-Grant
1789-Washington
1885—-Cleveland
1805-Jefferson
1801-Jefferson
1877-Hayes
1825-Adams
1797-Adams
1849-Taylor
1829-Jackson
1833-Jackson
1813-Madison
1809-Madison
1905-Roosevelt
1869-Grant
1945-Roosevelt
1865-Lincoln
1793-Washington
1921-Harding
1897-McKinley
1909-Taft
1821-Monroe
1985-Reagan
1981-Reagan
1989-Bush
1889-Harrison
1853-Pierce
1817-Monroe
1837-VanBuren
1861-Lincoln
1845-Polk
2021-Biden
1925-Coolidge
1929-Hoover
1841-Harrison

|]U LLU‘ HMW%MW

100

200

86

300

400

500

3.4.4 Feature co-occurence matrix

A feature co-occurrence matrix (FCM) is a square matrix that counts the number of times
two features co-occur in the same context, such as within the same document, sentence, or
window of text. This is a special object in {quanteda}, but behaves similarly to a DFM. As
an example, consider the following:

tibble(

doc_id = 1:2,

text = c("I love Mathematics.", "Mathematics is awesome.")
) 1>

corpus() |>
tokens (remove_punct = TRUE) |[>
fcm(context = "document") # by default

Feature co-occurrence matrix of: 5 by 5 features.

features
features I love Mathematics is awesome
I 0 1 1 0 0
love 0 0 1 0 0
Mathematics O 0 0 1 1
is 0 0 0 O 1
awesome 0 0 0O O 0

Let’s download the data_corpus_guardian corpus from the {quanteda.corpora} package

corp_news <- quanteda.corpora::download("data_corpus_guardian")

When a corpus is large, you have to select features of a DFM before constructing a FCM. In
the example below, we clean up as follows:

1. Remove all stopwords and punctuation characters.
2. Remove certain patterns that usually describe the publication time and date of articles.
3. Keep only terms that occur at least 100 times in the document-feature matrix.

toks_news <- tokens(corp_news, remove_punct = TRUE)

dfmat_news <-
dfm(toks_news) |>
dfm_remove(pattern = c(stopwords("en"), "*-time", "updated-*", "gmt", "bst", "|"))
dfm_trim(min_termfreq = 100)

topfeatures(dfmat_news)

87

said people one new also us can

28413 11169 9884 8024 7901 7091 6972
government year last
6821 6570 6335

nfeat (dfmat_news)

[1] 4211

To construct an FCM from a DFM (or a tokens object), use fem(). You can visualise the
FCM using a textplot_network() graph as follows:

fcmat_news <- fcm(dfmat_news, context = "document")
feat <- names(topfeatures(dfmat_news, 30)) # Top 30 features
fcmat_news_select <- fcm_select(fcmat_news, pattern = feat, selection = "keep")

dim(fcmat_news_select)

[1] 30 30

set.seed(123)
quanteda.textplots: :textplot_network(fcmat_news_select)

88

3.5 Scaling and classification

In this section we apply mainly unsupervised learning models to textual data. Scaling and
classification aim to uncover hidden structures, relationships, and patterns within textual
data by placing texts or words on latent scales (scaling) and grouping them into meaningful
categories or themes (classification). This process transforms complex, high-dimensional text
into more interpretable and actionable insights.

3.5.1 Wordfish

Wordfish is a Poisson scaling model of one-dimensional document positions (Slapin and Proksch
2008). This model is used primarily for scaling political texts to position documents (like
speeches or manifestos) on a latent dimension, often reflecting ideological or policy positions.
The main objective is to identify the relative positioning of texts on a scale (e.g., left-right
political spectrum) based on word frequencies.

Let y,; be the count of word j in document i. Then assume

Yi; ~ Poi(A;;) (3.1)
log(A;;) = ¥, + B,0; (32)

In this example, we will show how to apply Wordfish to the Irish budget speeches from 2010.
First, we will create a document-feature matrix. Afterwards, we will run Wordfish.

toks_irish <- tokens(data_corpus_irishbudget2010, remove_punct = TRUE)
dfmat_irish <- dfm(toks_irish)

Run Wordfish model

tmod_wf <- textmodel wordfish(dfmat_irish, dir = c(6, 5))
summary (tmod_wf)

Call:
textmodel _wordfish.dfm(x = dfmat_irish, dir = c(6, 5))

Estimated Document Positions:

theta se
Lenihan, Brian (FF) 1.79403 0.02007
Bruton, Richard (FG) -0.62160 0.02823
Burton, Joan (LAB) -1.13503 0.01568

89

Morgan, Arthur (SF) -0.07841 0.02896

Cowen, Brian (FF) 1.77846 0.02330

Kenny, Enda (FG) -0.75350 0.02635

ODonnell, Kieran (FG) -0.47615 0.04309

Gilmore, Eamon (LAB) -0.58406 0.02994

Higgins, Michael (LAB) -1.00383 0.03964

Quinn, Ruairi (LAB) -0.92648 0.04183

Gormley, John (Green) 1.18361 0.07224

Ryan, Eamon (Green) 0.14738 0.06321

Cuffe, Ciaran (Green) 0.71541 0.07291

0Caolain, Caoimhghin (SF) -0.03982 0.03878

Estimated Feature Scores:
when i presented the supplementary budget to this house

beta -0.1594 0.3177 0.3603 0.1933 1.077 0.03537 0.3077 0.2473 0.1399

psi 1.6241 2.7239 -1.7958 5.3308 -1.134 2.70993 4.5190 3.4603 1.0396
last april said we could work our way through period

beta 0.2419 -0.1565 -0.8339 0.4156 -0.6138 0.5221 0.6892 0.275 0.6115 0.4985
psi 0.9853 -0.5725 -0.4514 3.5125 1.0858 1.1151 2.5278 1.419 1.1603 -0.1779
of severe economic distress today can report that
beta 0.2777 1.229 0.4237 1.799 0.09141 0.304 0.6196 0.01506
psi 4.4656 -2.013 1.5714 -4.456 0.83875 1.564 -0.2466 3.83785
notwithstanding difficulties past
beta 1.799 1.175 0.4746
psi -4.456 -1.357 0.9321

The R output shows the results of the Wordfish model applied to Irish political texts, estimating
the ideological positions of various politicians. Each politician is assigned a “theta” value,
representing their placement on a latent scale; positive values indicate one end of the spectrum,
while negative values indicate the opposite.

For example, Brian Lenihan (FF) has a high positive theta, suggesting a strong position on one
side, while Joan Burton (LAB) has a negative theta, placing her on the other side. The model
also provides feature scores for words (beta values), indicating their importance in distinguish-
ing between these positions. Words with higher absolute beta values, such as “supplementary,”
are key in differentiating the ideological content of the texts, while psi values reflect word fre-
quency variance, contributing to the model’s differentiation of document positions.

We can plot the results of a fitted scaling model using textplot_scaleld().

textplot_scaleld(tmod_wf)

90

Lenihan, Brian (FF) -
Cowen, Brian (FF) -
Gormley, John (Green) ——
Cuffe, Ciaran (Green) ——
Ryan, Eamon (Green) ——
OCaolain, Caoimhghin (SF) ——
Morgan, Arthur (SF) -
ODonnell, Kieran (FG) ——
Gilmore, Eamon (LAB) -
Bruton, Richard (FG) -
Kenny, Enda (FG) -.-
Quinn, Ruairi (LAB) ——
Higgins, Michael (LAB) ——
Burton, Joan (LAB) .

-1 0 1
Estimated theta

1 Note

The value of 0 for theta in the Wordfish model is not a true zero in an absolute sense.
Instead, it serves as a relative reference point on the latent scale. In Wordfish, theta
values are relative, meaning they indicate positions along a spectrum where the direction
(positive or negative) is determined by the model’s scaling based on the data and specified
parameters.

The function also allows you to plot scores by a grouping variable, in this case the party
affiliation of the speakers.

textplot_scaleld(tmod_wf, groups = dfmat_irish$party)

91

Lenihan, Brian (FF)
Cowen, Brian (FF)

¢

44

Gormley, John (Green)
Cuffe, Ciaran (Green) —e—
Ryan, Eamon (Green) ——

usal9

OCaolain, Caoimhghin (SF) -
-

Morgan, Arthur (SF)

=1

ODonnell, Kieran (FG) ——
Bruton, Richard (FG) -
Kenny, Enda (FG) .-

O4

Gilmore, Eamon (LAB) -
Quinn, Ruairi (LAB) —.—

Higgins, Michael (LAB) —.—
Burton, Joan (LAB) |

av

-1 0
Estimated theta

textplot_scaleld(

tmod_wf,
margin = "features",
highlighted = c("government", "global", "children",

"bank", "economy", "the", "citizenship",

"productivity", "deficit")

92

Finally, we can plot the estimated word positions and highlight certain features.

the
3
government
economy
2
children AR
B deficit
T 0
£ bank
7
w
global
-3 citizenship
productivity
-5.0 25 0.0 25

Estimated beta

Beta (x-axis) Reflects how strongly a word is associated with the latent dimension (e.g., ideo-
logical position). Words with high absolute beta values are more influential in distinguishing
between different positions; positive beta values indicate words more associated with one end
of the scale, while negative values indicate the opposite.

Psi (y-axis) Represents the variance in word frequency. Higher psi values suggest that the word
occurs with varying frequency across documents, while lower values indicate more consistent
usage.

Therefore, words in the upper right (high beta, high psi) are influential and variably used,
indicating key terms that may strongly differentiate between document positions. Words in
the lower left (low beta, low psi) are less influential and consistently used, likely serving as
common or neutral terms.

The plot also helps identify which words are driving the distinctions in the latent scale and
how their usage varies across documents.

3.5.2 Topic models

Topic models are statistical models used to identify the underlying themes or topics within a
large collection of documents. They analyze word co-occurrences across documents to group
words into topics, where each topic is a distribution over words, and each document is a
mixture of these topics.

93

A common topic model is Latent Dirichlet Allocation (LDA), which assumes that each doc-
ument contains multiple topics in varying proportions. Topic models help uncover hidden
semantic structures in text, making them useful for organizing, summarizing, and exploring
large text datasets. In R, we use the {seededlda} package for LDA.

install.packages("seededlda")
library(seededlda)

Back to the Guardian data, corp_news. We will select only news articles published in 2016
using corpus_subset () function and the year () function from the {lubridate} package

corp_news_2016 <- corpus_subset(corp_news, year(date) == 2016)
ndoc (corp_news_2016)

[1] 1959

Further, after removal of function words and punctuation in dfm(), we will only keep the top
20% of the most frequent features (min_termfreq = 0.8) that appear in less than 10% of all
documents (max_docfreq = 0.1) using dfm_trim() to focus on common but distinguishing
features.

Create tokens
toks_news <-
tokens (
corp_news_2016,
remove_punct = TRUE,
remove_numbers = TRUE,
remove_symbol = TRUE

) I>
tokens_remove (

pattern = c(stopwords("en"), "*-time", "updated-*", "gmt", "bst")
)

Create DFM
dfmat_news <-
dfm(toks_news) %>%

dfm_trim(
min_termfreq = 0.8,
termfreq_type = "quantile",

max_docfreq = 0.1,
docfreq_type = "prop"
)

94

The LDA is fitted using the code below. Note that k = 10 specifies the number of topics to
be discovered. This is an important parameter and you should try a variety of values and
validate the outputs of your topic models thoroughly.

Takes a while to fit!
tmod_lda <- seededlda::textmodel lda(dfmat news, k = 10)

You can extract the most important terms for each topic from the model using terms (). Each
column (topicl, topic2, etc.) lists words that frequently co-occur in the dataset, suggesting
a common theme within each topic.

terms (tmod_lda, 10)

topicl topic2 topic3 topicéd topich topic6
[1,] "syria" "labor" "johnson" "funding" "son" "officers"
[2,] "refugees" "australia" ‘"brussels" "housing" "church" "violence"
[3,] "isis" "australian" "talks" "nhs" "black" "doctors"
[4,] "military" "corbyn" "boris" "income" "love" "prison"
[5,] "syrian" "turnbull" "benefits" "education" "father" '"victims"
[6,] "un" "budget" "summit" "scheme" "felt" "sexual"
[7,] "islamic" "leadership" "negotiations" "fund" "parents" "abuse"
[8,] "forces" "shadow" "ireland" "green" "story" "hospital"
[9,] "turkey" "senate" "migrants" "homes" "visit" "criminal"
[10,] "muslim" "coalition" ‘"greece" "businesses" "read" "crime"
topic7 topic8 topic9 topicl0

[1,] "oil" "clinton" "climate" "sales"

[2,] "markets" "sanders" "water" "apple"

[3,] "prices" "cruz" "energy" "customers"

[4,] "banks" "hillary" "food" "users"

[5,] "investors" "obama" "gas" "google"

[6,] "shares" "trump's" "drug" "technology"

[7,] "trading" "bernie" "drugs" "games"

[8,]1 "china" "ted" "environmental" "game"

[9,] "rates" "rubio" "air" "iphone"
[10,] "quarter" "senator" "emissions" "app"

” 13 ” 13

As an example, Topic 1 (“syria”, “refugees”, “isis”), is likely related to international conflicts,
specifically around Syria and refugee crises. Topic 4 (“funding”, “housing”, “nhs”) is likely
related to public services and social welfare issues, such as healthcare and housing. Each
topic provides a distinct theme, derived from the words that frequently appear together in the
corpus, helping to summarize and understand the main themes in the text.

95

You can then obtain the most likely topics using topics() and save them as a document-level
variable.

assign topic as a new document-level variable
dfmat_news$topic <- topics(tmod_lda)

cross-table of the topic frequency
table(dfmat_news$topic)

topicl topic2 topic3 topic4 topicb topic6 topic7 topic8 topic9 topiclO
203 222 85 211 249 236 180 186 196 184

In the seeded LDA, you can pre-define topics in LDA using a dictionary of “seeded” words.
For more information, see the {seededlda} package documentation.

3.5.3 Latent semantic scaling

Latent Semantic Scaling (LSS) is a method used to place words or documents on a latent scale
that represents an underlying dimension, such as sentiment, ideology, or any other semantic
axis. The key idea is to use the co-occurrence patterns of words across documents to identify
and position items along this hidden dimension.

LSS is performed using the {LSX} package. In this example, we will apply LSS to the corpus
of Sputnik articles about Ukraine. First, we prepare the data set.

Read the RDS file directly from the URL
corp <- readRDS(url("https://www.dropbox.com/s/abmel8nlrwxgmz8/data_corpus_sputnik2022.rds?d

toks <-
corp |>
corpus_reshape("sentences") |> # this is a must!
tokens (
remove_punct = TRUE,
remove_symbols = TRUE,
remove_numbers = TRUE,
remove_url = TRUE

dfmt <-
dfm(toks) |>
dfm_remove(pattern = stopwords("en"))

96

Now to run an LSS model, run the following command:

1ss <- textmodel 1ss(
dfmt,
seeds = as.seedwords(data_dictionary_sentiment),
k = 300,
cache = TRUE,
include_data = TRUE,
group_data = TRUE

Taking the DFM and the seed words as the only inputs, textmodel_lss() computes the
polarity scores of all the words in the corpus based on their semantic similarity to the seed
words. You usually do not need to change the value of k (300 by default).

Let’s look at the output of the LSS model:

summary (1ss)

Call:
textmodel_lss(x = dfmt, seeds = as.seedwords(data_dictionary_sentiment),
k = 300, include_data = TRUE, group_data = TRUE)

Seeds:
good nice excellent positive fortunate correct
1 1 1 1 1 1
superior bad nasty poor negative unfortunate
1 -1 -1 -1 -1 -1
wrong inferior
-1 -1
Beta:
(showing first 30 elements)
excellent positive gander good
0.2102 0.1918 0.1883 0.1829
diplomatic staffer's ex-kgb correct
0.1802 0.1773 0.1771 0.1749
mend inter-parliamntary workmanship russo-american
0.1743 0.1719 0.1715 0.1713
nicety china-u.s soufi good-neighborliness
0.1712 0.1674 0.1664 0.1644

97

china-canada fidgety
0.1616 0.1611

cordial canada-china

0.1573 0.1569
good-neighbourly brennan's
0.1550 0.1544

blida abdelkader

0.1533 0.1533

Data Dimension:
[1] 8063 59711

relations
0.1584
superior
0.1569
mutual
0.1538

downtrend
0.1578
understanding
0.1561
reaffirmed
0.1534

Polarity scores in Latent Semantic Scaling (LSS) quantify how words or documents relate to a
specific dimension (e.g., sentiment) based on predefined seed words. Seed words represent the
extremes of this dimension (e.g., “good” vs. “bad”). LSS analyzes how other words co-occur

with these seed words to assign a score.

We can visualize the polarity of words using textplot_terms(). If you pass a dictionary to be
highlighted, words are plotted in different colors. data_dictionary_LSD2015 is a widely-used
sentiment dictionary. If highlighted = NULL, words are selected randomly to highlight.

textplot_terms(lss, highlighted = data_dictionary_LSD2015[1:2])

Warning: ggrepel: 8 unlabeled data points (too many overlaps). Consider

increasing max.overlaps

98

attack
. agreement

restrictions best
. | gree s agreed

accusat|on3@.spon5|ble\
. 67 . Lhormal
= . poor . arguing .| -/ ,
= bad: i opportunities = hopes Pc g Group
2 fulfity I correct
S 4- extremism . defeated ' {irrr]espectéd * negative
q?.)— oppressed. =St deMISE ejyctance i stod s+ positive
T nasty h:alpless. sgarysuitable, rupture

21 K g .
complacency: tiksia recreatiofinessy - murdering |
proactively scuffle a : rescuing
q = : o » affection
01 N G negligence
-0.1 0.0 01
Polarity

Based on the fitted model, we can now predict polarity scores of documents using predict ().
It is best to work with the document-level data frame, which we will then add a new column
for the predicted polarity scores.

dat <- docvars(lss$data)
dat$lss <- predict(lss)
glimpse(dat)

Rows: 8,063

Columns: 5

head <chr> "Biden: US Desires Diplomacy But 'Ready No Matter What Happens' I~
url <chr> "https://sputniknews.com/20220131/biden-us-desires-diplomacy-but-~
time <dttm> 2022-02-01 03:25:22, 2022-02-01 01:58:19, 2022-02-01 01:47:56, 2~
date <date> 2022-01-31, 2022-01-31, 2022-01-31, 2022-01-31, 2022-01-31, 2022~
1ss <dbl> 0.10093989, 0.99263241, -0.76609160, 0.15991318, 0.25420329, -1.5~

©“ H H L P

Basically what we have is a data frame, where each row represents a single document (here,
a news item from Sputnik with a timestamp). Each document also has a predicted polarity
score based on the LSS model. We can visualise this easily using ggplot (). But first, we need
to smooth the scores using smooth_lss() (otherwise it is too rough to interpret).

99

dat_smooth <- smooth_lss(dat, 1lss_var = "lss", date_var = "date")

ggplot (dat_smooth, aes(x = date, y = fit)) +

geom_line() +
geom_ribbon (

aes(ymin = fit - se.fit * 1.96,

ymax = fit + se.fit * 1.96),

alpha = 0.1
)+
geom_vline(xintercept = as.Date("2022-02-24"), linetype = "dotted") +
scale_x_date(date_breaks = "months", date_labels = "¥b %Y", name = NULL) +
labs(title = "Sentiment about Ukraine", x = "Date", y = "Sentiment") +
theme_bw() +
theme (axis.text.x = element_text(angle = 45, hjust = 1))

Sentiment about Ukraine

0.5+

Sentiment

0.0+

The plot shows that the sentiment of the articles about Ukraine became more negative in
March but more positive in April. Zero on the Y-axis is the overall mean of the score; the
dotted vertical line indicate the beginning of the war.

100

References

DEPS. 2022. “The Population and Housing Census Report (BPP) 2021: Demographic, House-
hold and Housing Characteristics.” Department of Economic Planning and Statistics, Min-
istry of Finance and Economy, Brunei Darussalam.

Jaafar, Salwana Md, and Rahayu Sukmaria Sukri. 2023. “Data on the Physicochemical Char-
acteristics and Texture Classification of Soil in Bornean Tropical Heath Forests Affected
by Exotic Acacia Mangium.” Data in Brief 51 (December). https://doi.org/10.1016/j.dib.
2023.109670.

Pebesma, Edzer, and Roger Bivand. 2023. Spatial Data Science: With Applications in R. 1st
ed. New York: Chapman and Hall/CRC. https://doi.org/10.1201/9780429459016.

Slapin, Jonathan B., and Sven-Oliver Proksch. 2008. “A Scaling Model for Estimating Time-
Series Party Positions from Texts.” American Journal of Political Science 52 (3): 705-22.
https://doi.org/10.1111/j.1540-5907.2008.00338.x.

101

https://doi.org/10.1016/j.dib.2023.109670
https://doi.org/10.1016/j.dib.2023.109670
https://doi.org/10.1201/9780429459016
https://doi.org/10.1111/j.1540-5907.2008.00338.x

	Welcome
	Lectures
	Data Scraping and Linear Regression
	Ethics
	HTML basics
	Elements
	Contents
	Attributes

	Reading HTML with rvest
	CSS selectors
	Extracting data
	Text
	Attributes
	Tables

	Element vs elements
	Scraping house prices
	Cleaning using LLM
	Linear regression
	Model fit
	Interpretation
	Predictions

	More advanced models
	Random forests

	References

	Geographical Information System (GIS) data
	Introduction
	(MULTI)POINT data
	Clean up the point data
	Preliminary plot of the data
	Merge with the study data

	Line data ((MULTI)LINESTRING)
	Road networks in Belait region

	Areal data ((MULTI)POLYGONS)
	OpenStreetMap data
	EXAMPLE: How to get all the schools in Brunei

	References

	Quantitative analysis of textual data
	Introduction
	Quantitative data
	Pre-formatted files
	Multiple text files
	JSON
	PDF
	Microsoft Word

	Workflow
	Corpus
	Tokens
	Document feature matrix

	Statistical analysis
	Simple frequency analysis
	Lexical diversity
	Document/Feature similarity
	Feature co-occurence matrix

	Scaling and classification
	Wordfish
	Topic models
	Latent semantic scaling

	References

